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1. INTRODUCTION 
 
According to the 2015 Urban Mobility Scorecard (TTI, 2015), traffic congestion caused 
drivers to waste more than 3.1 billion gallons of fuel and cost travelers nearly 7 billion 
extra hours behind the wheel (42 hours/commuter/year); the total nationwide price tag is 
about $160 billion, or $960 per commuter. Congestion impacts also go well beyond 
immediate travel; for instance, it is predicted that public health impacts will increase to $17 
billion by 2030 (Levy, Buonocore et al. 2010). Improving the efficiency and utilization of 
existing facilities, especially major and minor arterials, through intelligent utilization of 
current infrastructure has become paramount as resources have become increasingly 
constrained and the cost of new capacity has become prohibitive.   

Through its Smart City initiatives the City of Atlanta (CoA) is tackling these 
challenges head-on, rapidly becoming a national leader in Smart Cities, integrating data, 
communications, analytics, and implementation in the intelligent and informed 
management of our transportation system. This project presents activities designed to 
demonstrate intelligent transportation system (ITS) technologies and congestion mitigation 
in Atlanta on the North Avenue Smart Corridor, where advanced vehicle-to-vehicle (V2V) 
and vehicle-to-roadside (V2R) technologies have been deployed (RenewAtlantaBond 
2018).   

 North Avenue ITS Demonstration Testbed Overview 

A key component of the ongoing CoA Smart City initiative is the implementation of traffic 
operational improvements designed to minimize key surface transportation performance 
measures, such as travel time and congestion. In collaboration with the already extensive 
efforts underway by the CoA, the Georgia Tech team seeks to further enhance the ongoing 
efforts though a hybrid implementation of data collection, data integration, data analytics, 
and advanced simulation modeling. Georgia Tech is utilizing the North Avenue corridor 
as a “Green Corridor” demonstration site. We are developing a dynamic data-driven system 
which employs real-time operations data (Dedicated Short-Range Communications 
(DSRC), Bluetooth, signal control, etc.) from the North Avenue corridor integrated 
monitoring system. The basic conceptual approach includes: 
 

• Utilizing CoA sensor infrastructure to monitor near-real-time high-resolution 
corridor level conditions from which traffic, energy, and emissions behaviors will 
be assessed via big data applications. 

• Developing an advanced simulation model (Vissim) of the North Avenue Corridor 
capable of representing detector, signal, DSRC, and other sensor data. 

• Applying big data processes to integrate streaming signal timing and vehicle 
movement data to assess emissions and energy usage for simulated and field data. 

• Visualizing Green Corridor energy and emissions data. 
• Delivering useful Key Performance Indices (KPIs) to system operators to inform 

updates in network control (e.g., optimize corridor-level energy consumption and 
emissions). 
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• Utilizing the developed simulation to determine the potential for energy and 
emission related KPI improvements as the traveling public begins to widely adopt 
connected vehicle (i.e. DSRC) and/or other Smart City technologies. 

 
While not directly addressed in this initial effort, this project lays the foundation 

for further advancements in real-time, dynamic, data-driven Smart City applications. 
Through such an effort it will be possible to: integrate online dashboards for system 
monitoring and operations; close the control loop with tailored messages direct to 
individual travelers to reduce emission and energy usage; support real-time optimization 
of signal control strategies balancing travel time, throughput, emissions, and energy usage; 
integrate predictive analytics for near-future optimization; and expand the system beyond 
North Avenue. 

 Project Background 

Smart City programs are fast becoming a reality (Rouse 2017, U.S. DOT n.d.)(Rouse 2017; 
U.S. DOT n.d.). A Smart City uses information and communication technology (ICT) 
facilities to develop insights to improve the quality of life of residents, workers, and visitors 
(U.S. DOT 2014) (U.S. DOT 2014). Within the transportation context Smart City 
initiatives emphasize technology deployment, with roadways and vehicles being equipped 
with connected vehicle (CV) technologies and numerous new embedded sensors. Such a 
Smart City is expected to consume real-time information and leverage communication 
technologies to address urban challenges, including transportation related issues such as 
traffic congestion and environmental pollution. Addressing these challenges entails the 
consumption of high volumes of high velocity data to influence real-time decisions in an 
effort to optimize the use of transportation systems and services. The early major incentive 
for the deployment of many CV and embedded sensor technologies was the potential for 
reductions in vehicle crash related injuries and fatalities (U.S. DOT 2017, U.S. DOT n.d.) 
(U.S. DOT 2017; U.S. DOT n.d.). However, with high-speed data transactions in a 
connected environment, travelers and traffic management centers are expected to receive 
relevant information in real-time, which will not only enable safer travel, but also enhance 
environmental friendly route/mode choices and optimized traffic operations.  
 Smart connected vehicle corridors are envisioned to use wireless communications 
such as DSRC or 5G, on-board computer processing, advanced vehicle sensors, GPS 
navigation, and smart infrastructure to build a connected network. However, as CV is still 
an emerging technology, with no requirement from either the Department of Transportation 
or automobile manufacturers to deploy infrastructure or on-board units, research is limited 
by the availability of testbeds. In addition, there is currently a frequent arrival of new 
embedded sensors being developed for smart city corridors. It is expected that as these 
technologies are tested, and with the incentives provided by smart cities initiatives, there 
will be incremental adoption of the technologies in the field. During this transition phase, 
as the technologies are deployed there will be a mixed or hybrid environment in which the 
equipment, vehicles, and drivers will have to operate until there is a full saturation of 
technology adoption. For investigating the effective application of additional data available 
through CV and embedded sensor technologies and to prepare for future deployments or 
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modification of operations, it is critical to develop the capability to simulate this hybrid 
infrastructure environment so that different scenarios can be developed and tested.  
 To accomplish such development and testing the City of Atlanta has selected the 
North Avenue Corridor as an example Smart City transportation implementation, 
championed by the Renew Atlanta program. The project aims to make the North Avenue 
NW Corridor a smart connected corridor by integrating data, communications, and 
analytics in the intelligent and informed management of the transportation system 
(RenewAtlantaBond 2018). The North Avenue corridor in Atlanta has been subject to rapid 
changes in land use and transportation infrastructure. The development of Ponce City 
Market and the Beltline bicycle and pedestrian trail are already affecting travel patterns 
and corridor mobility. Resulting congestion increases energy consumption and vehicle 
emissions for the 29,000 households living in the 14 surrounding neighborhoods as well as 
other CoA residents that utilize the corridor. The potential development of a Beltline 
streetcar line and automated transit demonstration project on North Avenue provides 
significant additional incentive to establish a technology testbed in this corridor and 
monitor the evolution of travel patterns and congestion over time. Figure 1 and Figure 2 
illustrate the corridor and surrounding neighborhoods. 
 

 

 Neighborhood   Households  
 Atkins Park                 181 

 Candler Park              1,607 
 Downtown              2,908 
 Druid Hills                 642 

 English Avenue                 651 
 Georgia Tech                   18 

 Inman Park              2,208 
 Marietta Street Artery                 312 

 Midtown               9,316 
 Old Fourth Ward              4,964 

Piedmont Park NA 
 Poncey-Highland              1,043  

 Sweet Auburn                 669  
 Vine City                 742  

 Virginia Highland              3,751  
 Total            29,012  

 

Figure 1: North Avenue corridor and 
local neighborhoods  

Figure 2: Households in each North 
Avenue corridor neighborhood  

 
The research team model development occurred in two major phases, the first was the 
development of a hybrid model with fifteen field calibrated signalized intersections on 2.6 
miles of the North Avenue Smart corridor. Within this hybrid model two of the signals are 
driven by real-time signal status and vehicle arrival data streams, the remaining 
intersection’s volumes and signal control are driven by the simulation. Chapter 3 of this 
report discusses the architecture development and implementation required to create this 
hybrid model. This includes the integration of multiple physically separated systems, to 
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enable communications, drive the simulation, and generate performance metrics in real-
time. To evaluate the robustness of the approach, simulation results and performance 
metrics from the real-time data injection scenario are compared to the control case where 
all inputs are predetermined. 

The second major phase of the project, presented in Chapter 4, updates the model 
architecture to incorporate streaming data from all 15 intersections. During this phase of 
the research it was seen that continuity in retrieval of high frequency data from a connected 
corridor can be interrupted due to communication or other challenges. Such data gaps in 
volume count or signal data streams can lead to erroneous simulation results. The error can 
be more pronounced if the gap duration is long and occurs at a crucial corridor location, 
where the volume or signal has a significant influence on corridor operations. Presence of 
such data gaps in the data streams that drive the simulation model can lead to a significantly 
different emulation of the traffic state in the simulation versus that in the field. Thus, the 
second phase of the project also uses the developed connected corridor data-driven 
simulation model to derive insights on the impact of data loss and potential error is data 
imputation on performance measures produced from the simulation model. This effort 
allows for recommendations related to the development of a production level model.   

Finally, under the Georgia Institute of Technology Smart Cities Project a sidewalk, 
ramp, and curb cut inventory and condition assessment was conducted for Renew Atlanta 
for several corridors in Atlanta. As these inventories and assessments have been separately 
reported to the Renew Atlanta project team they are not discussed within this report. 
However, a brief summary of the effort is provide in Appendix A.   
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2. LITERATURE REVIEW 
 
This section reviews past efforts in the development and application of real-time data 
driven traffic simulation models. The review focuses on three main aspects: 1) connected 
corridor deployments and studies, 2) real-time traffic data driven simulations, and 3) traffic 
data imputation methodologies. 

 Connected Corridor Deployments and Testbed Studies 

Cities across the world are undertaking smart city initiatives to improve resident and visitor 
quality of life, increase sustainability, and efficiently utilize resources. While there is no 
one smart city definition (Greco 2015), smart city concepts generally focus on advancing 
urban services by leveraging technology (Glasmeier A 2015, Williams 2018). A common 
smart city transportation initiative is the deployment of sensors and advanced technologies 
to create smart connected corridors. For example, the Pennsylvania Department of 
Transportation (PennDOT) aims to use a coordinated smart corridor system to reduce 
congestion and crashes, and to provide real-time traffic information (PennDOT 2018). The 
Tennessee Department of Transportation (TDOT) is focusing on upgrading signals to 
optimize intersection operations on the Interstate 24 smart corridor (TDOT n.d.). In 
England, the A2M2 connected corridor between London and Dover is being used as pilot 
testbed to explore information transference between vehicles and infrastructure. The 
corridor is expected to provide enhanced mobility services, such as real-time traffic 
management, as well as incident response through real-time personalized connectivity with 
the drivers (Seymour 2018). The Minneapolis Department on Transportation (MnDOT) 
has selected part of the Highway 55 corridor for connected vehicle technology deployment. 
Using this corridor as a testbed, MnDOT aims to test connected infrastructure and develop 
a data management system to support information sharing across connected environment 
stakeholders. The MnDOT connected corridor project aims to aid traffic safety by 
providing real-time assistive information to drivers about work zones, lane merges, 
pedestrian conflicts, etc. (MnDOT n.d.). Similar connected corridor projects are in progress 
in several other U.S. states, including New York, California, Virginia, Wyoming, and 
Georgia (Caltrans , CityOfAtlanta 2017, WYDOT 2017, NYCDOT 2019, UCBerkeley 
n.d., VTTI n.d.).  

To achieve the vision of leveraging information sharing between vehicles and the 
infrastructure in order to enhance safety, mobility, and sustainability of transportation 
services, it is imperative to test different aspects of connected vehicle (CV) technologies 
under realistic field conditions. To better understand and prepare for the “technical, 
institutional, and financial challenges” that emerging CV technology deployment will 
bring, the United States Department of Transportation (USDOT) is supporting the on-road 
deployment and testing of these technologies (USDOT n.d.). As part of this program, sites 
in New York, Wyoming, and Tampa, are testing CV applications that cater to local 
transportation needs. The connected vehicle systems at these sites have been operational 
since fall 2018. The impact on key performance measures at these locations are to be 
studied at least until fall 2021. The New York City Department of Transportation 
(NYCDOT) pilot is using a selected number of vehicles fitted with CV technology and 
roadside units (RSUs) deployed at selected intersections to test vehicle-to-infrastructure 
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(V2I) safety applications. In addition, at this site, in-vehicle applications to avoid vehicle-
pedestrian conflicts will also be tested. The Tampa site focuses on testing V2I and vehicle-
to-vehicle (V2V) safety and mobility applications, such as an intelligent traffic signal 
system. The key focus of the Wyoming Department of Transportation (WYDOT) is to use 
V2I and V2V applications to address challenges associated with weather and freight 
movement. For this, WYDOT is developing advisories to provide safe transportation and 
an efficient incident management systems, such as roadside alerts, parking notifications, 
and dynamic travel guidance (USDOT n.d.). Availability of high frequency data in such a 
smart corridor can be used to provide more accurate real-time dynamic information to road 
users and to transportation organizations. 

Research on developing the necessary tools to test connected applications to 
quantify the impacts of this new technology is ongoing. For example, to evaluate the 
performance of a connected application - cooperative adaptive cruise control (CACC), 
Zulkerfli et al. (2016) recognized the need for a tool to test connected applications in a safe 
environment. The study built a simulation model to conduct an experiment with 
hypothetical input values for the number of vehicles in a network. The experiment was 
designed considering a mixed fleet of connected and non-connected vehicles (Mohd 
Zulkefli, Mukherjee et al. 2016). Virginia DOT derived an algorithm for real-time 
prediction of vehicle locations in a connected environment using a traffic simulation model. 
The algorithm estimated locations of non-connected vehicles in the network using locations 
of the connected vehicles and other traffic parameters. The study also tested a connected 
application to optimize signal timing (Goodall 2013). Doecke et al., studied a V2V safety 
application of the market available connected vehicle technologies. In this study vehicle 
trajectory data from simulated crash scenarios are input to an On-Board Unit (OBU) that 
generated Basic Safety Messages (Doecke, Grant et al. 2015). Use of such hardware-in-
the-loop (HITL) simulation platforms, are expected to advance the modeling of complexity 
found in connected environment systems (U.S. DOT 2016, U.S. DOT 2017). Chowdhary 
et al., studied connected applications to provide insights on handling real-time connected 
data streams and big data management tools (Chowdhury, Rahman et al. 2018). The 
USDOT program Applications for the Environment: Real-Time Information Synthesis 
(AERIS) studied connected environmental applications. Applications such as eco-
approach and departure at signalized intersections, eco-traffic signal timing, and eco-traffic 
signal priority, etc., are tested on a simulation model of a 27 intersection network. The 
study utilizes historic volumes and signal data and different penetration rate of connected 
vehicles in the fleet. In this study, connected technology data such as Signal Phasing and 
Timing (SPaT) data distributed by the road side units (RSUs) and on-road vehicle 
information such as location, speed, etc., provided by Basic Safety Messages (BSM) are 
simulated assuming a 100% penetration rate of RSUs (U.S. DOT 2014). 

 Real-Time Traffic Data-Driven Simulation Modelling 

The integration of smart technologies such as sensors, networked communications, and 
hardware and software computing with the physical infrastructure is central in creating a 
Smart City (Brügmann, Schreckenberg et al. 2013, U.S. DOT 2014, Pop and Proștean 
2018). One area of significant focus is the integration of the new technologies enabling an 
improved estimation of the traffic state and real-time traveler and traffic information 



Smart Cities Atlanta - North Avenue 

 7 

(Allström, Barcelo et al. 2017, Chen and Du 2017). Given the inherent challenges in field 
experimentation, the use of traffic simulation models driven by real-time input data to 
emulate the real-world environment is utilized in numerous studies (Xiaowen, Ferman et 
al. 2003, Brügmann, Schreckenberg et al. 2013). Various traffic simulation tools have been 
used by researchers, depending on the modeling requirements. A University of Leeds 
report in 2000 compared the capability of several macroscopic and microscopic simulation 
models in developing real-time traffic management solutions ("SMARTEST" 2000). More 
recently, a similar study looked into 17 simulation software tools and noted “a lack of 
online traffic simulation software applications specially designed for heterogeneous road 
transportation networks” (Pell, Meingast et al. 2017). 

The concept of using real-time data to drive a traffic simulation model is not new. 
Previous studies, such as Henclewood et al. (2010), injected real-time vehicle detection 
data into microscopic simulation models to simulate the current traffic state, which was 
then used to generate predictions of future traffic states (Henclewood, Guin et al. 2010). 
An early example of real-time simulation is provided by Maroto et al., who developed a 
microscopic model that could simulate driving simulator traffic scenarios in real-time, 
where vehicle behavior model is based on car following theory (Maroto, Delso et al. 2006). 
An effort, tested in the Dutch city of Assen, built a real-time traffic model that used traffic 
flow and travel-time data from different sensor technologies such as cameras, highway 
loop detectors, and Bluetooth® sensors, to predict the short-term traffic state. The model 
architecture connected the real-time traffic measurements with the macroscopic dynamic 
traffic assignment model “StreamLine”. Traffic counts were used for model calibration and 
forecasting (Wismans, de Romph et al. 2014). A study by Sturari, Catani et al. presented 
the use of in-field mobile and fixed sensor data to drive a real-time microscopic traffic 
simulation model built using the Simulation of Urban Mobility (SUMO) simulation 
package. Model input included the real-time traffic count and vehicle location data 
obtained from different sources such as induction loop, camera counter, radar counter, 
automatic vehicles location (AVL) systems, etc. (Sturari, Catani et al. 2016). In these 
studies, the real-time data comprised of vehicle detection or vehicle position data; however, 
infrastructure information such as the traffic signal state, state of ramp meters, information 
from variable speed limit signs, etc., were assumed to be pre-encoded in the simulation 
model based on known logic or field calibration. Today, with the richness of information 
in a smart city CV environment, where the vehicle sensor data may result in real-time 
changes to the signal control, ramp meter rates, etc., it is imperative that the state of the 
infrastructure is updated in the simulation to ensure the accuracy of the simulation results. 
Anthony et al. studied computational benefits of using parallel processing for simulating 
traffic flows in a real-time traffic simulation system and concluded that a parallel system 
can be crucial for real-time traffic simulations (A. Chronopoulos and Johnston 1998). 
USDOT Federal Highway Administration (FHWA) is using the hardware-in-the-loop 
approach, in which the connected infrastructure and connected vehicle data are fed as input 
to the simulation model, to study the application of CV technologies. The research is 
expected to provide engineers with a technology that will allow CV applications engineers 
to test various simulation scenarios and obtain meaningful results (FHWA 2019). 

The availability of these various data streams also provide interesting challenges. 
The volume, velocity, and wide variety of these data streams naturally suggest the use of 
big data technologies for extracting useful information. Previous studies such as Amini et 
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al. (2017) have used tools such as Kafka to address the issues of volume and variety of big 
data (Amini, Gerostathopoulos et al. 2017). Lv et al. (2015) used deep learning techniques 
for predicting traffic flow (Lv, Duan et al. 2015). The current study takes a hybrid 
approach, where the architecture allows for the use of big data concepts in the extract-
transform-load (ETL) stages preceding the injection of the data into a simulation model. 

 Traffic Data Imputation Methodologies 

The presence of gaps in traffic data is common and, thus, traffic data imputation 
methodologies have long been of interest to traffic engineers. The collected traffic data can 
be volume count data, vehicle speed data, or one of many other types of data. Heuristic 
imputing methods are used, such as replacing missing values by another day’s data directly, 
or by using an average, moving average, or weighted moving average of historical data 
(Zhong, Sharma et al. 2005, Roh, Canadá et al. 2016). In 2006, Zhong et. al applied a 
pattern matching-based method which chooses the day for replacement values based on the 
match of values obtained in previous selected stretch of hours (Zhong and Sharma 2006). 
Auto-regressive integrated moving average (ARIMA) models, in which missing data are 
predicted based on the available preceding values, have been used and studied in several 
efforts (Lee and Fambro 1999, Williams 2001). ARIMA-based models have been 
frequently used with modifications to account for long-term seasonal variations, i.e., 
Seasonal ARIMA (Ghosh, Basu et al. 2005, Spławińska 2015, Pell, Meingast et al. 2017), 
and to account for spatial variations, that is, space-time ARIMA (Ding, Wang et al. 2010). 
In the learning methods, the non-parametric learning k-nearest neighbor (kNN) algorithm 
for imputations has shown high accuracy (Oehmcke, Zielinski et al. 2016, Tak, Woo et al. 
2016, Sun, Ma et al. 2017). A recent study by Zhuang et al. applied an image inpainting 
approach based on a convolutional neural-networks (CNN) to find values for imputation 
of missing volume data. In comparison to two other methods (Bayesian principal 
component analysis and denoising stacked auto encoder, which is a deep learning based 
approach), the CNN-based approach performed better (Zhuang, Ke et al. 2019). As in the 
initial step, this study considers a simple heuristic volume data imputation approach. 
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3. PHASE 1: HYBRID MODEL ARCHITECTURE, DATA 
DESCRIPTION, AND PERFORMANCE TEST 

 
This chapter presents an assessment of the feasibility aspects of using a real-time data-
driven transportation simulation model to evaluate and visualize network performance 
indices to provide dynamic operational feedback in a real world environment, in a big data 
context. A hybrid traffic simulation model, consisting of a mix of preset and real-time data-
driven intersections, is developed. The hybrid model represents a traffic corridor partially 
equipped with smart devices generating high velocity, high volume datasets with limited a 
shelf-life. The model used in this study emulates seventeen consecutive intersections on a 
corridor. Signal controls and vehicle volumes at two of the intersections are driven by real-
time data while the remaining intersections are driven by preset data. An optimized 
architecture is developed to enable control of the signals and the vehicle volumes using 
real-time data from in-field detectors, and real-time processing of the vehicle trajectories 
from the simulation output to generate travel-time, energy, and emissions performance 
indices. 

 Introduction 

A smart city is expected to consume real-time information and leverage communication 
technologies to address urban challenges, including transportation related issues such as 
traffic congestion and environmental pollution. An example smart city transportation 
implementation is currently being championed by the Renew Atlanta program, Atlanta, 
Georgia, USA, as part of the North Avenue Smart Corridor project. The project aims to 
make the North Avenue NW Corridor a smart connected corridor by integrating data, 
communications, and analytics in the intelligent and informed management of the 
transportation system (CityofAtlanta 2018). This chapter presents a hybrid real-time data-
driven transportation microscopic simulation model of 2.6 miles of the North Avenue 
Smart corridor that allows near-real-time visualization of network performance metrics. 

As discussed, smart connected vehicle corridors are envisioned to use wireless 
communications such as DSRC or 5G, on-board computer processing, advanced vehicle 
sensors, GPS navigation, and smart infrastructure to build a connected network. However, 
as CV is still an emerging technology, with no requirement from either the Department of 
Transportation or automobile manufacturers to deploy infrastructure or on-board units, 
research is limited by the availability of testbeds. In addition, there is currently a frequent 
arrival of new embedded sensors being developed for smart city corridors. It is expected 
that as these technologies are tested, and with the incentives provided by smart cities 
initiatives, there will be incremental adoption of the technologies in the field. During this 
transition phase, as the technologies are deployed, it is expected that there will be a mixed 
or hybrid environment in which the equipment, vehicles, and drivers will have to operate 
until there is a full saturation of technology adoption. For investigating the effective 
application of additional data available through CV and embedded sensor technologies and 
to prepare for future deployments or modification of operations, it is critical to develop the 
capability to simulate this hybrid infrastructure environment so that different scenarios can 
be developed and tested. Such a hybrid model that simulates an incremental deployment 
scenario where connectivity to the edges is partial, is presented here. 
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The model contains seventeen field calibrated signalized intersections with two of 
the signals driven by real-time signal status and vehicle arrival data streams. This study 
develops and implements the architecture required to integrate multiple physically 
separated systems, to enable communications, drive the simulation, and generate 
performance metrics in real-time. To evaluate the robustness of the approach, simulation 
results and performance metrics from the real-time data injection scenario are compared to 
the control case where all inputs are predetermined. 

 Model Architecture 

To capture the intricacies of the incremental deployment of CV technologies and 
infrastructure connectivity, this study proposes the use of a hybrid simulation that is 
partially modeled using preset data and partially modeled using real-time data. This 
requires the integration of multiple disparate modules. There are three high-level tasks 1) 
real-time data injection into the simulation, 2) simulation model execution, and 3) 
generation of performance metrics. Dynamic links are established between these three 
components to ensure faster than real-time computations, ensuring that the simulation does 
not fall behind the real-world operations. Figure 3 presents the complete model 
architecture. 
 

 
Figure 3: Hybrid model architecture. 

 
Central to the architecture is the Flask micro web framework that acts as the 
communication facilitator and data broker. Several PERL and Python scripts perform the 
task of continuously fetching the data from the sensors on the field and populating a 
database. The microscopic simulation requests the data from this database via requests 
through the Flask engine and receives data as and when it becomes available. The 
simulation writes the vehicle trajectories to an output file which is scanned continuously 
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by another set of Python scripts that generate the performance metrics. The results are 
available for retrieval via requests through the Flask interface. Details of the major 
components and the links between them are discussed in the following subsections. 

3.2.1. Traffic Simulation Model 
The traffic simulation model is built using an off-the-shelf simulation package, PTV’s 
Vissim version 9.00-08. Primary inputs for the Vissim transportation model are signal 
timing plans, vehicle volume inputs and turning movement percentage splits at the 
intersections. The signal timing plans of the intersections on the corridor were obtained 
from Renew Atlanta staff. The vehicle volume inputs and turning ratios were obtained by 
manual vehicle count data collection at the intersections. At two consecutive intersections, 
Glen Iris Drive at North Avenue and Ponce City Market at North Avenue, signal controls 
and vehicle volumes are driven using real-time emulation of signal control events and 
vehicle volume data from the field sensors. The remaining 15 intersections use the preset 
values in the calibrated model. Figure 4 shows a snapshot of the network corridor with the 
two real-time data-driven intersections highlighted. 
 

 
Figure 4: Study corridor (Courtesy: Google Maps ®) 

3.2.1.1. Volume Update Logic 

The vehicle volume simulation inputs for the northbound and southbound approaches at 
the two data driven intersections (Glen Iris Dr. and Ponce City Market) are updated every 
5 minutes to match the fluctuations in real-time vehicle volume. This is implemented based 
on the previously field collected initial flow data used in the model calibration, adjusted to 
reflect the 5 minute interval real-time proportional fluctuations in the traffic volume. This 
approach allows the vehicle volume inputs at the two real-time data driven intersections to 
remain consistent with the calibration field-collected corridor volumes. 

3.2.2. Injecting Real-Time Intersection Signal State and Volume Count Data 
The volume and signal state input data are obtained from sensors in the field. The data are 
polled out of the field sensors by a set of PERL scripts and stored in a database. The data 
are injected into the simulation during runtime using Vissim’s COM interface to emulate 
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the near-real-time state of signal control and vehicle volume for the two intersections in 
the simulation model. The Flask server provides the interface for Vissim COM to fetch the 
data from the database. 

3.2.2.1. Signal Controller Data Parsing 

The signal events data that is polled out of the field signal controllers contains a 10Hz series 
of timestamped eventIDs and the corresponding parameters. The events of interest required 
to drive the signal controllers in the simulation model are: 
 

• 1: Start of Green Indication 
• 8: Start of Amber Indication 
• 10: Start of Red Indication 

 
For these Event Type IDs, the parameter column provides corresponding signal phase 
number. Additional detail on streaming sensor data is provided in Chapter 4.   

3.2.2.2. Vissim COM-Interface 

The Vissim COM interface is used to change the simulation network objects during runtime 
based on the signal phase and sensor inputs. Python 2.7 is used to drive the Vissim 
simulation model using its COM interface, by running the simulation model in single step 
mode, and changing the signal controls and vehicle volumes during run time at the 
respective time steps. The simulation resolution is set to 10; that is, 10 simulation time 
steps are executed per simulation second. For every time step of the simulation period, a 
series of COM commands are executed along with the command to run the next simulation 
step. 

At every 10th time step that marks the start of a simulation second, the COM driver 
script requests intersection signal event data for the corresponding timestamp. The driver 
script then assesses the fetched data to determine whether the event type ID for a signal 
phase indicates a change of state such as start of green, start of amber, or start of red 
indication, and updates the state of the corresponding signal head object in the simulation. 

To update the vehicle volume-input for the two data driven intersections, the COM 
script sends a request every 3000th time step (5th simulation minute) to fetch the vehicle 
volume for the last 5 minutes. The input volumes are determined using the logic described 
earlier. The COM script’s flowchart to execute each simulation time step is shown in Figure 
5, with the requests for signal and volume data marked as callouts 1 and 2. 

3.2.3. Dynamic Performance Evaluation Visualizations 
The simulation’s output is captured in a vehicle trajectory output file which updates during 
runtime. The performance evaluator module fetches data from the Vissim trajectory output 
file, with non-locking reads, and performs the computations for energy and emissions. The 
visualization of these parameters in the form of time series plots, available in real-time. 
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Figure 5: Flowchart for Vissim COM driver script. 
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3.2.3.1. Energy-Emission 

The trajectory output file is also used to estimate energy and CO2 emissions profile in real-
time at a predetermined regular interval using the Motor Vehicle Emission Simulator 
(MOVES) matrix. MOVES matrix is a computationally improved version of the energy 
estimation tool MOVES, developed and mandated by the US Environmental Protection 
Agency (USEPA) (Guensler, Liu et al. 2017). It estimates energy and emissions for off-
road and on-road vehicles based on the vehicle type, weather conditions, and vehicle 
model, make, and year. For energy and emissions estimates, the 10 Hz data in the trajectory 
output file is too noisy for direct use. Thus, the 10 Hz data is condensed to 1 Hz by taking 
the median of every 10 records for every vehicle. 

The vehicles’ coordinates are used to assign the vehicles to 200-ft segments on the 
network (discussed further in Chapter 4). A visualization of the cumulative energy 
consumption per segment for fixed intervals, such as 60 seconds, is created using the 
Google Maps API. Energy and CO2 emission heat maps refresh automatically at fixed 
intervals (say every 60 seconds) synchronous with the simulation run. Figure 6 depicts the 
described architecture used for dynamic visualization of the energy performance metrics. 

 
 

 
Figure 6: Architecture for dynamic visualization of energy performance indicators. 

 Result and Discussion 

The results presented here are two fold. The first set of results refer to the real-time outputs 
from the model during runtime. The second set presents the results of the test of robustness 
of the simulation model in the presence of real-time inputs and the test of sensitivity of the 
model to these real-time inputs. Due to the need for multiple iterations of the model run 
(with exact same input conditions) for the comparative analysis, the experiments were 
conducted with pre-fetched input data. 

3.3.1. Real-time Performance Measures Computation 
Near-real-time traffic information visualized for performance measures such as queue 
lengths, energy consumption, and CO2 emissions can be used in traffic operations to 
interpret and update eco-driving routes. With the communications available in a CV smart 
corridor environment, these updates can be fed back to the travelers, helping them make 
environment friendly route choices and encourage environmentally friendly eco driving 
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patterns. The study for this effort was undertaken for a 3-hour PM-peak model run, during 
which real-time data is used to drive the simulation model. The plots for energy and CO2 
emissions were created dynamically during the run as previously described. The model 
architecture simulated traffic at 1.3x rate compared to wall clock time and generated 
dynamic performance evaluation plot at 0.98x rate, for an hour of experiment on a dual 
processor machine with 192 GB RAM and 2.5 GHz frequency. An example energy heat 
map generated at the end of the 47th simulation minute is shown in Figure 7, presenting the 
cumulative energy consumption during the 46-47 simulation minute interval throughout 
the corridor. The points in the heat map symbolize the midpoint of 200 ft corridor segments. 
The heat image around each point represents the total energy consumed in the area in the 
last minute. 

 
 

 
Figure 7: Energy plot generated dynamically during simulation runtime. 

3.3.2. Model Sensitivity to Real-Time Input 
The model’s sensitivity to real-time input is tested by comparing the performance measures 
for simulation runs with and without real-time input at the intersections of Glen Iris Dr. 
with North Ave. and Ponce City Market with North Ave., with all other intersections 
utilizing the calibrated data in both scenarios. For the two scenarios vehicle travel times, 
energy consumption, and CO2 emissions performance measures were measured for eight 
selected routes that traverse the two intersections. 

3.3.2.1. Experiment Design 

The simulation period for both the real-time model and preset-input model is three hours 
(10800 sec) with simulation resolution of ten time steps per simulation second. To reflect 
randomness ten replicate runs were undertaken for each scenario, where the Vissim 
Random Seed parameter is changed in each replicate. This allowed stochastic variation of 
vehicle arrivals into the network. Eight routes that go across the real-time driven 
intersections – Glen Iris Drive and Ponce City Market – are selected to specifically 
investigate the built model’s sensitivity to near-real-time input. Figure 8 shows the selected 
eight routes, of which the four westbound routes start at the Freedom Parkway intersection 
and four eastbound routes start near the I75/85 Connector. Additionally, for the eight 
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selected routes, energy consumption and CO2 emissions with simulation time are 
compared. 

 
Figure 8: Routes selected for studying model's sensitivity to real-time input. 

3.3.2.2. Vehicle Travel Time 

For brevity, results are given for two routes. Figure 9(a) below shows boxplots of vehicle 
travel time versus simulation time interval (15 minute intervals) for the ten random runs 
with real-time input (i.e., driven by field data) and with calibrated data on westbound Route 
4. Figure 9(b) shows the same for eastbound Route 6. These box plots show the average 
vehicle travel times of all vehicles that end their trip on the respective routes, for the 
corresponding simulation interval on x-axis. 

For Route 4, it is observed that the vehicle travel times for the real-time model and 
the preset-input model are comparable. The two sets of travel times fluctuate similarly over 
the simulation period. For Route 6, the difference in travel times between real-time and 
preset-input simulation is larger compared to that observed in Route 4; however, the values 
are still comparable. The maximum difference in average travel times is of approx. 60 
seconds (1 minute) for the simulation interval of 135-150 min. Among the eight selected 
routes, Route 4 and Route 6 shown in the figures here, recorded the maximum differences 
in westbound and east bound travel times. The closeness in vehicle travel time values for 
ten random simulation runs across all routes for the two compared models demonstrates 
that the results obtained from the real-time input model are within plausible bounds, with 
the potential that the real-time data is allowing for improved estimations from the 
simulation. However, field collected travel times are needed to confirm this supposition. 
 
 
 
 
 



Smart Cities Atlanta - North Avenue 

 17 

 
(a) 

 
(b) 

Figure 9: Average vehicle travel time versus simulation time intervals plots for (a) 
Westbound Route 4, and (b) Eastbound Route 6. 

3.3.2.3. Energy Consumption and CO2 Emission 

The comparison of the energy and emissions performance metrics from one pair of runs is 
shown in Figure 10. The energy consumption follows a fairly linear pattern with increases 
in travel time (Figure 10(a)). The longer a vehicle takes to traverse a given path, the more 
energy it is expected to consume, under most conditions. As reflected in the cumulative 
density function of energy (Figure 10(b)), the slightly higher travel times in the real-time 
simulation for Route 3 (whereas in Route 4 and Route 6 above real-time data driven 
simulation travel times tended to be lower) results in consistently higher energy estimates 
than the simulation without real-time data. The emissions values followed very similar 
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trends as the energy plots. These results are to be field validated. However, closeness of 
results for the two scenarios shows the potential of the real-time data driven simulation to 
provide improved performance metric estimates. 
 
 

 
(a) 

 
(b) 

Figure 10: (a) Scatterplot for energy consumption versus travel time for Route 3, 
and (b) Cumulative energy consumption density function for vehicles on Route 3. 

 Conclusion and Future Work 

This study assesses feasibility aspects of using a real-time data-driven transportation 
simulation model to evaluate and visualize network performance indices that can be used 
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to provide dynamic feedback to the real world operations environment. A hybrid traffic 
simulation model, consisting of a mix of pre-programmed and real-time data-driven 
intersections, is developed. The principal challenge identified in building the hybrid 
transportation simulation model is in integrating the multiple components underlying the 
complete model and ensuring they work in synchrony with real-time. However, an 
architecture was developed to enable such hybrid modeling. The simulation results from 
the hybrid model were compared with results from the model using preset values. The 
performance results indicated that with the presented architecture it is plausible to work 
with the high velocity data while ensuring sufficient responsiveness of the model to input 
changes. 

In the next section the corridor simulation model is expanded to incorporate available 
real-time data for all intersection in the model. Further, the data streams are investigated 
for data gaps, and data imputation methods are tested. 
 
(*This effort presented in this chapter has been published in: Saroj, A., S. Roy, R. Fujimoto, 
A. Guin, and M. Hunter. Smart City Real-Time Data-Driven Transportation Simulation. 
Proceeding of the Winter Simulation Conference (WSC), Gothenburg, Sweden D.C., Dec 
8th - 12th, 2018.) 
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4. UPDATED MODEL ARCHITECTURE, DATA ISSUES, 
AND MODEL PERFORMANCE SENSITIVITY TO 
VOLUME IMPUTATIONS EXPERIMENT 

 Introduction 

In a smart city, which is equipped with connected infrastructure, traffic data, such as 
vehicle detections and intersection signal indications are expected to be received in (near) 
real-time. Utilizing such data, the objective of the near-real-time simulation platform 
highlighted in this Chapter is the creation of a dynamic data-driven simulation that 
leverages high-frequency connected data streams to derive meaningful insights about the 
current traffic state and near-real-time corridor environmental measures. As a first step, a 
connected-infrastructure data-driven simulation model is developed. The developed model 
is capable of being driven in near-real-time with high-frequency connected infrastructure 
traffic volume and signal controller data streams. The model visualizes key traffic and 
environmental performance measures at near-real-time, providing dynamic feedback to 
users and transportation stakeholders. Such a data-driven simulation platform can be 
crucial in providing helpful insights on the effectiveness of new technology deployments. 
In this context, the built simulation model can be used to test impacts of smart/connected 
technologies, such as smart signal control or traveler information systems, in real-time. 

The developed simulation model emulates traffic on 2.3 miles of the North Avenue 
Smart Corridor in Atlanta, Georgia. The simulation model architecture feasibility and 
robustness were initially explored by driving two of the intersections with near real-time 
data streams and the remaining intersections using preset data, as discussed in Chapter 3. 
In this initial experiment the overall architecture was found to be capable of inserting the 
data into the simulation platform, maintaining the faster-than-real-time processing 
necessary for such a platform to maintain real-time capabilities, and able to provide 
meaningful traffic operations and vehicle emission estimates along the corridor (Saroj, Roy 
et al. 2018). For this chapter, the ability to stream the volume and signal data real-time has 
been expanded to all modeled signalized intersections in the corridor. However, 
investigation of the data streams themselves has revealed the presence of data gaps. Given 
the challenges of maintaining data streams in harsh field environments, such data loses 
should be expected, though such data gaps can impact the performance measure results and 
insights generated from the model. Thus, the model architecture needs to be enhanced to 
handle such data losses. Development of an imputation methodology should be informed 
by an understanding of the impact of data loss, and errors in data imputation, on generated 
performance measures. This chapter provides an overview of the improved architecture 
and utilizes sensitivity analysis to explore the impact of the volume data gap imputations 
on the key performance measures produced by the near-real-time data-driven simulation. 
Figure 11 shows the 15 intersections of the North Avenue Smart Corridor studied in this 
experiment. 
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Figure 11: Study corridor-2.3 miles of North Avenue Smart Corridor, including 15 

signalized intersections. 

 Updated Real-Time Data-Driven Simulation Model Architecture 

For simplicity, through the remainder of this chapter “real-time” will be use rather than 
“near-real-time”. The architecture is currently implemented with a lag of approximately 
seven minutes due to field data aggregation delays, although it could be implemented with 
a lag of just a few seconds given a real-time data stream. Figure 12 provides the updated 
real-time data-driven simulation architecture. The architecture is updated to perform four 
primary tasks: 1) injection of real-time signal control and volume data streams into traffic 
simulation model through raw data stream processing, 2) model execution through 
dynamic data-driven traffic simulation, 3) dynamic performance metric evaluation and 
visualization, and finally 4) efficient handling of transactions between modules using a 
data request management – (Flask Web Server). The following sections elaborate on each 
of these modules.  

 

 
**Note: All components in the architecture run continuous except PHP requests in Web 

Visualization that are on-demand 
 

Figure 12: Updated real-time data-driven simulation model architecture overview. 
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4.2.1. Real-Time Raw Data Stream Processing Module  
For each intersection, real-time vehicle per-lane counts are collected in the field using 
video detection and processing. Data are received (“Real-Time Aggregate Volume Count 
Data Stream”, Figure 12) as 6-minute, per-lane aggregate counts. The raw volume data 
stream (see Figure 13 for a sample) is filtered for the approaches of the 15 studied 
intersections. Volume count data contains both the timestamp of the start of the interval 
and the distribution of the volume count per lane, for each of three vehicle classes. The 3 
classes are listed as c1, c2, and c3 in Figure 13, where c1_1 refers to the count of vehicle 
class 1 in lane 1 and similarly c2_5 refers to the count of vehicle class 2 on lane 5. The lane 
ID (i.e., 1, 2, 3, etc.) follows the serial order from rightmost lane toward the roadway 
median. In the raw data stream processing module lane level raw volume data counts are 
aggregated across classes and lanes to obtain the approach level by movement aggregate 
counts, to be used as input for the traffic simulation model. 

 

 
Figure 13: Snapshot of raw volume count data. 

 
The signal controller data streams are received (“Real-Time Signal Data Stream,” Figure 
12) at a higher frequency, ranging between 0.1 Hz and 10 Hz. The received data stream 
contains the signal color indication status of all the signal heads for all intersections. 
Separate messages are sent for each intersection. Each message contains the state of all 
signal indications for that intersection, and a message is sent whenever any indication 
changes at the intersection. However, the raw signal data stream may include repeated 
redundant messages. For several intersections update message were sent approximately 
every 2.5 to 5 seconds even when there was no change in indications. From this data stream, 
messages that reflect a change in the current state of the signal indications (i.e., a light 
change on any signal head associated with the intersection) are identified to be used as 
dynamic input to the simulation model. Figure 14 provides a data sample, where each 
signal message record contains the associated date, timestamp, intersection ID, position of 
the intersection in latitude/longitude format, and hexcode ID. The hexcode ID is converted 
to a binary data string that contains signal status of all (max of 8) phases of the intersection 
at the corresponding timestamp. 
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Figure 14: Snapshot of raw  signal event data. 

4.2.2. Dynamic Data-Driven Traffic Simulation Module 
The six-minute aggregate vehicle count and high-frequency signal state information are 
inputs to the traffic simulation model. The volume data provides the input traffic on 
boundary links. The turn-movement ratios for internal links are enabled to change 
dynamically in the architecture. Where turn and through movements share a lane, turn-
movement splits are set based on historic data. The signal data drives all signal changes in 
the Vissim model. The traffic simulation model is developed in PTV’s Vissim 9.00-08. 
Vissim’s COM module is used to feed real-time data into the simulation model during 
runtime. Thus, the built arrangement simulates the last interval for which data are obtained 
from the real-time data stream, i.e., there is an approximately 7-minute lag between the 
simulation model and the field (i.e.. one interval plus fetching delay, discussed further in 
section 4.3). The simulation resolution is 10 Hz, although signal change events occur at a 
1 Hz rate. The 6-minute volume is randomly entered (shifted Poisson inter-arrival headway 
distribution) across the 6-minute period. Figure 15 provides an overview of the dynamic 
data driven simulation initialization logic and Figure 16 provides an overview of the 
simulation runtime logic.  
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Figure 15: Overview of dynamic data-driven traffic simulation initialization logic. 
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Figure 16: Overview of dynamic data-driven traffic simulation runtime logic. 

4.2.3. Dynamic Performance Measures Visualization Module 
The simulation provides a record of position, speed, acceleration, etc. for each vehicle in 
the network, at a 1 Hz rate. These per-second vehicle record data are used in runtime to 
estimate performance measures such as travel time on selected routes, queue lengths, 
energy consumed per vehicle, and emissions generated per vehicle. The estimated 
performance measures are then visualized on Openstreet maps.  

4.2.4. Data Request Transactions Management Module – Flask Web Server 
During a run dynamic data requests between the three other modules are handled using 
Python’s Flask web server. A Flask web server is used to generate urls that contain raw 
data fetched from the real-time raw data stream processing module requested by the 
dynamic data-driven traffic simulation module. Further, the flask web server is used to 
process post requests in the Vissim simulation logic, creating a dynamic log of the 
simulation output data that contains a record of position, speed, acceleration, etc., for each 
vehicle in the network. Lastly, the flask web server is also used to facilitate a similar 
dynamic data request link between the simulation output data log and the dynamic 
performance metric visualization module. 
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 Software Architecture 

The simulation model architecture is supported by a software architecture that uses 
different open-source software, programming languages, and open-source modules. The 
following subsections describe the different components that have been used to create the 
software architecture, expanding the module discussion in section 4.2.  

4.3.1. Extract, Transform, and Load Data 
The Extract Transform and Load (ETL) process involves multiple technologies. Several 
PERL and Python scripts perform the task of continuously fetching data from the sensors 
in the field and pushing them into a central database repository. The signal database gets 
updates at a frequency of 10 Hz whereas the volume data is available at a 360 seconds 
aggregate that is fetched on a 60 seconds update cycle to accommodate possible update 
latencies at the edge of the detection network.  

The central database server has two separate tables for populating live signal and 
volume data. The first table records change in signal state information as signal state is 
only transmitted from the field when there is a change for the given intersection.  However, 
several intersections will send messages every 2.5 to 5 seconds, when no state change 
occurs. Signal states are originally binary state information in the field but are compressed 
and transmitted in hexadecimal format by the vendor, helping to reduce cellular data usage. 
A query to the database returns the state in the form of a hexadecimal code as given by the 
field HexCode (sample data may be seen in Figure 17). The python code driving Vissim 
COM converts this code to binary status information to determine the changes in the signal 
states at the corresponding intersections. If no HexCode is returned, the signal state is left 
unchanged.  

The second table records volumes, where total volume is streamed and recorded 
every 360 seconds, for each intersection approach (sample data may be seen in Figure 18). 
The intersection associated with the IntersectionCode in Figure 17 (or IntersectionID in 
Figure 18) may be found in Table 1. While volume data is available for the intersection at 
Northside Dr., the signal data is not available. A placeholder identifier of 1234 is used for 
this intersection. This enables making a query for the intersection at a given simulation 
time stamp using the same intersection identifier for both signals and volumes. However, 
in the updated model discussed in this chapter the Northside Dr. intersection is not included 
as the signal data would need to be imputed for all time periods. 
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Figure 17: Sample from signal state data table 

 

 
Figure 18: Sample from volume data table 
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Table 1: Intersection IDs  

1234 Northside Dr. 
4794 State St. NW 
4795 Luckie St. NW 
4796 Techwood Dr. NW 
4797 I-75/85 Off Ramp 
4798 Spring St. NW 
4799 West Peachtree St. NW 
4800 Peachtree St. NE 
4801 Juniper St. NE 
4802 Piedmont Ave. NE 
7322 Central Park Pl. NE 
4804 Hunt St. NE 
4805 Parkway Dr. NE 
4806 Boulevard NE 
4807 Glen Iris Dr. NE 
4808 Ponce City Market NE 
4809 Freedom Pkwy 

 
 
For volume, the recordid (Figure 18) field is unique and is used as the primary key to 
populate the live database. This database supports queries with a specified intersection ID, 
approach, and time stamp. The field TSt denotes the beginning of the 360 second interval 
for the volume aggregate. For example, the first row of the set of records shown in Figure 
18 shows RecordDate=2019-09-18, a 6-minute interval start time of TSt=46440 (i.e., 
seconds from midnight), and an aggregate volume of 99 vehicles for approach 4798 (the 
code for the EB approach of Spring St.) A query using any timestamp between 46440 and 
46800 (ending time for the 360 second interval) for the given date, intersection ID, and 
approach, will fetch this record. 

As the database is updated in real time, it is computationally heavy to maintain an 
updated index for the tables. To ensure a fast response, it is therefore necessary to limit the 
size of these buffer tables. At 30 minutes past midnight, the records from the previous day 
are automatically purged and moved off from both the Volume and Signal tables to archival 
data tables. 

4.3.2. Data Retrieval and Coordination via Flask 
With the limitations of the current testbed infrastructure, the volume data aggregate is 
acquired at 360s aggregate level instead of the ideal per-vehicle-record level. The data is 
fetched from the field every 60 seconds so there is one minute of additional delay in 
retrieval of the 360s interval data. Thus, Vissim may be run at an approximately 420 
seconds lag from real-time. In this effort a 425 second lag is utilized to minimize impacts 
due to potential communication delays. The python® script driving the Vissim simulation 
using the Vissim COM interface, gets the data required to drive the simulation by making 



Smart Cities Atlanta - North Avenue 

 29 

data requests to the Flask® server. The Flask server interprets the request and in turn 
queries the database to fetch the requested signal or volume data and provide it to the 
Vissim COM script. 

4.3.2.1. Flask Requests: Signal 

At the start of a simulation driven via the Vissim COM script, the epoch time (a time base 
common in computer programming) for the start of the simulation is recorded. Since Flask 
does not store any data, the starting epoch is passed as an argument for every query 
throughout the run-time of the simulation. The COM script makes a GET request for all 
signal changes at the start of every simulation second for the next second. The signal data 
request is made via a REST API call using a URL formatted as follows: 

 
http://ip_address:port_number/LiveSignal/startepoch=start_epoch&simti
me=simulation_time 

 
For example, a simulation, started at an epoch time of 1568660943 seconds, asking for 
signals for simulation time t=40s, with Flask running at IP address 100.100.100.101 and 
port 5000, will make a GET request with the URL: 

 
http://100.100.100.101:5000/LiveSignal/startepoch=1568660943&simtim
e=40 
 
The URL request triggers a python function that takes start epoch time and 

simulation time as arguments and pulls relevant signal change events for the particular 
second from the signal table in the database. For the current testbed network, Vissim 
simulation rate typically varies between 0.8x to 1.2x, depending dynamic simulation 
parameters such as traffic demand (i.e., the number of vehicles being simulated), real-time 
signal data availability (i.e., the number of signal changes executed at a simulation second), 
etc.  

For the current testbed network, Vissim is typically capable of running the 
simulation faster than real-time. Where Vissim is able to run faster that real-time, to ensure 
a Vissim run is made synchronously with lagged real-time (real time - 425s), the signal 
query is held back by the Flask server and executed only when the wall clock reaches the 
real-time equivalent of the second that is being simulated. For example, if a signal GET 
request for simulation time st=40s for a simulation started at epoch of se=1568660943s is 
made when the current lagged wall time e is 1568660982.5s, the system will wait for se+st-
e= 0.5s, before making the query. This ensures that the data is actually available in the 
database before the query is executed (barring data transmission failures from the field).  
Where the simulation runs at slower than real-time rate, the volume query is made for 
se+st, and signal query is made for se+st-425.  

To accommodate field data losses, this function also checks if a particular signal 
does not show any changes in the last 4 minutes. In such a situation, it sends an indication 
to the COM script, in response to which the COM script switches that signal over to be 
driven by Vissim RBC (Ring-Barrier Control, a common signal control method in an 
offline Vissim model) until data is again available for the intersection.  
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4.3.2.2. Flask Requests: Volume 

Every 360 seconds, Vissim COM makes a GET request for volume at every entry-point of 
the network, for the next available volume bin. As stated there is currently a 425 second 
lag in the simulation and wall clock time (i.e., the current time). However, this lag is a 
function of the data availability and a smaller volume bin size and lag could be 
implemented within the framework.   
 
The URL for the requests uses the following format: 

 
http://ip_address:port_number/LiveVolume/startepoch=start_epoch&int
ersection=intersection_code&approach=approach&simtime=simulation_
time 

 
For example, a simulation, started at an epoch time of 1568660943 seconds, asking for 
volume for northbound (NB) at State Street (denoted by code 4794), for simulation time  
interval t=360s-720s, with Flask running at IP address 100.100.100.101 and port 5000, will 
make a GET request with the URL: 
 

http://100.100.100.101:5000/LiveSignal/startepoch=1568660943&interse
ction=4794&approach=NB&simtime=360 

 
Not unlike the URL for signal data, a function is triggered by this URL to make the correct 
query from the volume table in the central database. Since the signal queries already force 
a synchronization of Vissim simulation clock to real time at the beginning of every 
simulation second, the volume queries do not have to enforce the real-time synchronization 
functionality. 

4.3.3. Real-time Trajectory and Signal Data-processing 
Vissim COM makes a POST request using Python flask to export the trajectory data. The 
data is packaged in JSON format for standardization and ease of consumption and is 
broadcasted at a 1 Hz frequency. The trajectory data includes relevant information about 
every vehicle in the network such as coordinates, speed, acceleration, headway, etc., at a 
10 Hz level. The data is written out to text files as well as to a buffer table in the database. 
The trajectory data exported by Vissim is then parsed in real-time by a python script for 
the next step of data processing and KPI calculation. The python script is triggered 
whenever the POST data is received. 

In addition, recall that the signal states are not guaranteed to be available from the 
field devices, potentially due to device, communication, or other failures. When the data is 
not available, Vissim is allowed to fall back to operation via the default RBC. However, in 
these instances the state of the signal is not available in the input stream. To ensure that the 
status of the signal can be shown in the real-time web interface, it is necessary to export 
the data from Vissim as well as the input stream. Vissim COM makes additional flask 
POST calls to export/write the traffic signal status data at the end of every simulation 
second. The data received is parsed by a python script and pushed into the signal status 
table in the database for use by the visualization interface.  
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4.3.4. Trajectory Data Condensation  
The trajectory data as parsed from the previous step has information for every vehicle in 
the network every tenth of a second. To reduce the noise in the data, especially for 
acceleration values, every 10 records of each vehicle are condensed into a single record by 
taking the median of the 10 records. The resultant 1 Hz condensed trajectory data is then 
processed using the MOVES matrix based computation methodology to evaluate KPIs; 
including, but not limited to energy consumption and vehicular emission aggregates of the 
network. To study the propagation of KPIs through the network with changing volume and 
signals, the entire network was subdivided into smaller 200 ft. segments. The KPI values 
are aggregated from the individual vehicle trajectory points within the segment and 
reported for the entire network. This reporting occurs with minimal delay, thus posted KPIs 
are at an approximately 425s delay, resulting from input data delays as previously 
discussed.  

4.3.4.1.  Demarcations of 200 ft. Segments  

As stated, to ensure uniformity and standardization of reporting, the KPIs were reported as 
aggregates over standard 200 ft. lengths of roadway units or “segments” that were 
quantitatively similar, although not exactly the same due to roadway geometry constraints. 
Barring a few exceptions, the distance between two adjacent intersections in the study 
network was always higher than 400 ft. The following rules were used to ensure 
consistency in the demarcations of the segments. Figure 19 shows an example division of 
a two-intersection corridor.   

(1) Each intersection box was separated out as individual segment, irrespective of 
length. This allowed for the intersections to be treated separately. 

(2) The segmentation between intersections started at each intersection and 
progressed toward the center between the intersections. The middle segment may 
have a length other than 200ft, although will always be less than 400 feet. Where 
the middle section would be less than 200 feet this distance would be divided 
between the two adjacent segments, insuring a minimum segment length of 200 
feet.  

(3) Within the network, segments are unidirectional. Therefore, each direction of 
traffic has a separate segment ID. 

(4) Within the intersection proper, turn movements require the assignment of vehicle 
data to two segments. For this effort, the trajectory points lying inside an 
intersection “box”, are associated with the segment with the most similar bearing, 
as will be seen in the next section. 
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Figure 19: Demarcation process for segments 

4.3.4.2. Associating coordinates to segments  

Vehicle trajectory data from Vissim includes front and rear coordinates of each vehicle. 
These coordinates are used to calculate the heading of each vehicle. Using the calculated 
heading and the x, y coordinate of a vehicle, a vehicle is assigned to a particular segment 
of the network using coordinate geometry. The steps involved are as follows. To begin 
with, a rectangular boundary is created around the intersection segments. The vehicles 
lying inside an intersection boundary, as determined by comparison of the coordinates of 
the vehicles and the corners of the rectangle around the intersection, are set aside to be 
treated with step (IV). The remaining data-points are outside the intersection bounds and 
are processed using steps (I) to (III). 
 
Step (I) -Match Vissim® vehicle heading to segment direction 

The vehicle heading extracted from Vissim® trajectory files is used to determine the 
directionality of the segment to which the vehicle is to be assigned. A threshold of 30 
degrees of deviation between the vehicle heading and the segment heading is assumed to 
be acceptable for matching purposes. Therefore if a vehicle heading is within 30 degrees 
of the segment heading, it is assumed to be aligned with that segment. The segment with 
traffic in the opposite direction is likely to have a difference of 180±30º from the vehicle 
heading. Thus, a necessary but not sufficient condition for a Vissim vehicle to be associated 
to a segment, the heading vector of a vehicle should not make more than a 30 degree offset 
from the direction vector of the 200 ft. segment. As this is a simple first order calculation, 
the computation time of this calculation is low. Hence, this is used as the first step in 
reducing the number of segments to which a vehicle location can be plausibly associated, 
e.g. vehicles are divided into those headed northbound, southbound, eastbound, and 
westbound.   

Step (II): Width buffer threshold for association of a data-point to a given segment 
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A segment is defined by the starting and ending x,y coordinates. It is a linear definition as 
seen in Figure 20. To take into account the roadway width, a buffer is taken on either side 
of the segment. With three lanes assumed for each direction of the roadway, and allowing 
for the curbs, a buffer of {3*13ft (lane width) + 10ft (for curbs)} results in approximately 
50 feet per roadway direction. This is further multiplied by 2 to allow for error in x,y 
placement and to allow for roadway curvature. Thus, the entire buffer utilized for a 
Vissim® segment is 200ft, i.e. 100ft on each side of the roadway.  

Thus, for the specific calculations, if the coordinates of the ends of a segment are 
(X1, Y1) and (X2, Y2) respectively, the line joining them “l” is given by the equation in the 
x-y plane:  

 
l: (y - Y1) = s*(x - X1) …………..…………..…………..…………..………….. (1) 
 
Where the slope is calculated as: 

 
s = (Y2 - Y1)/(X2 - X1) …………..…………..…………..…………..………….. (2) 
 

The condition that the coordinate (X, Y) of the data-point should lie within the 100 ft on 
either side of the centerline is given by: 

 
| (Y-Y1) – s*(X-X1)|/ √ (s2 +1) < 100 ………..…………..………..………….. .. (3) 

 
Figure 20: Association of data points to a segment 

Step (III): Length buffer threshold for association of a data-point to a given segment 
 

As depicted in Figure 20, the data-point, to be associated with a segment, has to have its 
coordinates inside the shaded area. In the Step 2 check, the point has been verified to lie 
within 100 ft of the center line of the segment. The current check ensures that the data-
point lies between the end nodes in the segment as well. Perpendicular projections to l 
drawn at each of the extreme nodes (l’ and l’’) are given by the following equations: 

 
l’:  (x - X1) + s* (y - Y1) = 0 ----------------------------------------------------------- (4) 
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l’’: (x – X2) + s* (y – Y2) = 0 ---------------------------------------------------------- (5) 
 

For the vehicle to be within the bounds in Figure 20, the distance of the vehicle (x, y) from 
each extremity, as denoted by l’ and l’’ respectively, will be less than the Euclidean 
distance between the extremities. These conditions are given by the following equations: 

 
d1 = |(X - X1) + s* (Y - Y1)|/ √ (s2 +1) <d -------------------------------------------- (6) 
 
d2 = |(X – X2) + s* (Y – Y2)|/ √ (s2 +1) <d ------------------------------------------- (7) 
 
Where d = linear distance between (X1, Y1) and (X2, Y2)  
 

   = √{(X2 - X1)2 + (Y2 - Y1)2 } ------------------------------------------------ (8) 
 

Step (IV): Associate data-points in an intersection segment   
 

For a data-point within the intersection bounds, the heading of the data-point is used to 
assign the data-point a direction (E, W, N, or S). For example, for a point that lies inside 
the box that is demarcated as intersection segment ‘70’, if the heading is between -45º and 
+45º, the point is assigned North and the data-point is associated with segment ’70-N’. A 
specified association of data-points to a particular directional segment within the 
intersection enables the study of the transition and handover of the KPI values from one 
segment to another through the intersection. 

4.3.5. KPI calculation  
Using the MOVES-matrix (Guensler, Liu et al. 2017), estimates of vehicular emission and 
energy consumption are computed using the speed, acceleration, and grade associated with 
each vehicle trajectory data-point. Along with emission and energy, the distance and 
timestamp associated with the data-point are added to the running total for the respective 
variable for each segment. The distance and time parameters are used to compute the time-
mean speed associated with each segment. The computed time-mean speeds are then used 
to compute the average travel time in each segment. The KPI aggregates are computed 
every 10 simulation seconds and populate the KPI table in the database. The table contains 
all the KPI values along with the aggregate distance, and the aggregate travel time for a 
given time-stamp interval. Figure 21 provides an example of the KPI table. At any given 
point of time, the KPI values only for the last 360s interval are stored in the buffer table 
for retrieval by the visualization interface. The KPIs visualized for this network with the 
KPI table are: 

• Energy 
• CO2 emissions 
• NOX emissions 
• Speed 
• Travel time 
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The methodology for these calculations may be found in (Liu, Xu et al. 2017). 
 

 
 

 Figure 21: Sample KPI visualization lookup-table 

For web-visualization, the leaflet.js module (Agafonkin 2019), a JavaScript module that 
uses OpenStreetMaps (OpenStreetMaps n.d.), is used to create several of the map overlay 
functionalities. PHP calls to the central database are used for retrieving the real-time KPI 
data generated from the Vissim data as described in the previous section. As the KPI values 
are generated every 10 seconds these PHP calls are made at a 0.1 Hz frequency.  

In addition to the KPIs, the web interface also displays the traffic signal states for 
the intersections in the network. Similar to the KPI values, only the last 360s interval of 
signal data for the signal-heads is retained in the buffer tables at any point in time. For 
updating the signal data, the PHP queries are made at a 1 Hz rate to enable faster refresh 
rates for the visualization of the signals.  

Alongside the instantaneous visualization, popup charts are used to display a brief 
history of the KPIs and signal charts. Popup charts are displayed when a segment or signal 
icon is clicked. The charts show the last 360 seconds of a KPI value or signal state, as 
appropriate. The Plotly module (Plotly 2019) is used to generate these charts. The signal 
status charts update every 1 second and the KPI value charts refresh every 10 seconds, in 
congruence with the refresh rates of the instantaneous values in the map. 
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4.3.1. Visualization frontend 
Two versions of the visualization front end are currently deployed and operational in 
parallel. The real-time version [http://realtime.ce.gatech.edu/coa/now] operates with an 
implementation of the full architecture described in the preceding sections. There is also a 
pseudo-real-time version [http://realtime.ce.gatech.edu/coa/] that is operated as a stable 
demonstration. The pseudo-real-time version is purely for demonstration purposes in the 
eventuality that the real-time version is unstable (which is expected since it is continuously 
under development, fed by active research). 

To create the pseudo-real-time demonstration version, the website bypasses 
running Vissim in real-time and uses archival pre-computed KPI and signal status data for 
March 18, 2019. The archival data is used to populate the 360s buffer tables for the KPI 
and the status by synchronizing the March 18th data to the current local time (EDT). Figure 
22 is a screenshot of the website that visualizes carbon dioxide emissions for the corridor 
on March 18, 2019. The popups shown in the figure are for historical emissions for the 
vehicles going WB at Spring St. and signal states experienced by the WB approach for the 
last 360 seconds. The charts are expected to be intuitively simple to interpret.  For example, 
once the signal turns RED (as seen in the lower chart in Figure 22) all vehicles stop and 
the emissions are minimal (as seen in the top chart in Figure 22). Subsequently, when the 
vehicles accelerate from stationary state, the net emissions are observed to increase. 

 

 
Figure 22: Screenshot of visualization website for March 18, 2019 

 Investigation of Real-Time Data Streams 

While the model architecture has been shown to be feasible, an investigation of the real-
time data streams used as input to the simulation revealed data loss in the data streams. 
Such missing data, if left absent or incorrectly imputed, is likely to impact the simulation 
results. Investigation of the streams revealed data gaps are likely related to communications 
(e.g., dropped or highly latent messages), equipment failure, or data message processing. 
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The volume and signal data were transmitted through separate systems, albeit both cellular-
based; thus, data loss was not correlated between the two data streams. The key 
characteristics of the observed data loss events are presented in the next sections. 

4.4.1. Volume Data Streams 
The raw real-time volume data streams contain information such as the timestamp of the 
start of the volume interval, the volume count distribution per vehicle class per lane, speed, 
occupancy, etc., for each record, where a record is created for each intersection approach. 
To study data gaps in the volume data stream, the raw data is reduced to contain only the 
required information for each record and processed to a dataset that clearly identifies the 
presence and absence of volume data for each interval of the day, i.e., identifies data gaps. 

4.4.1.1. Raw Volume Data Processing to Identify Missing Volume Intervals 

Using the four-step filter process shown in Figure 23, a final Standardized Name Table is 
developed from the database table containing the raw volume data allowing for a 
standardized input into the simulation model. This table filters unused data, converts all 
roadway naming and lane assignments to a standardized, consistent format, and modifies 
the timestamps (converting from Greenwich Mean Time (GMT) to Eastern Standard Time 
(EST)). In generating the Standardized Name Table, Lane ID modification was undertaken 
for the approaches where incomplete or incorrect lane IDs were identified. For example, if 
an approach with three lanes had data for only 2 lanes, listed as c1_1 and c1_2, it was 
assumed that the detections were present on the through lanes. With this assumption and 
according to the original lane ID numbering scheme (lane ID numbering starts from right 
most lane), the IDs for these lanes would be c1_2 and c1_3, with c1_1 being the missing 
detection ID name. For consistency in identification of missing detections the names are 
modified to match the original ID numbering scheme. 
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Figure 23: Four-steps of data processing to obtain the Standardized Name Table 

from Raw Volume Table 

4.4.1.2. Volume Data Gaps Analysis Aided with Interactive 2D and 3D 
Visualizations 

Analysis of volume data streams received for 112 days across the months of February, 
March, April, and May 2019 revealed gaps in the volume data. On plotting the missing 
data intervals on 3-D and 2-D dynamic visualizations and heat maps, different missing 
volume patterns were observed. Figure 24 and Figure 25 show 3D and 2D representations 
of missing volume patterns over all days. The 3D plots, Figure 24, show the hours with (a) 
no missing data, (b) one missing six-minute interval, (c) two-missing 6-minute intervals, 
etc. It is seen that there is a significant level of missing data, with the most frequently 
occurring being one missing interval or all intervals missing within an hour. Figure 25 
shows the aggregation of data loss over 28 day periods. Within this figure it can be seem 
that data loss is not a completely random process, with outages more likely across certain 
detectors and times of day.  
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Figure 24: 3D visualizations of missing data intervals by hour, with 24-hours of a 

day on the x-axis, 112 days on the y-axis, and detectors on the z-axis. 
Figures (a-k) show hours with 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 6-minute 
missing intervals. 
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Figure 25: Interactive 2D visualizations showing intermittent missing data patterns, 

aggregated over days: (a) 1-28, (b) 29-56, (c) 56-84, and (d) 85-112. 
 

Figure 26 is a heat map showing the presence (in light blue) and absence (in dark blue) of 
data availability for a typical day. The x-axis is divided into 240, 6-minute intervals (i.e., 
the number of 6-minute intervals in a 24-hour period), from midnight-to-midnight. The y-
axis represents 147 detectors spread across the 15 intersections included in the model. 
While at some detectors no data was obtained for the 112 days, implying complete data 
loss, at other detectors intermittent data loss with varying patterns from day-to-day was 
observed.  
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Figure 26: Missing volume pattern for 147 detectors over 24 hours on February 15, 

2019. 
Inspection of missing value patterns throughout the study period revealed that an 
intermittent data loss event nearly always includes all lanes of an approach, i.e., data are 
rarely received from some lanes on an approach while not on others. However, where data 
loss was permanent (i.e. no data were collected over the entire 112 days), data loss may 
incorporate all lanes on an approach or be isolated to a single approach lane, likely 
indicating either equipment failure or that the given lane was not detectorized. Figure 27 
summarizes availability of detectors based on studying the volume data gap patterns. 
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Figure 27: Volume detection availability at the intersections, per lane, per movement. 

Permanently missing movements are identified in bold and red. 

4.4.2. Signal Data Streams 
Similar to the volume data-stream, a review of the signal data stream revealed message 
losses as well. Since the messages are used to update the status in the simulation whenever 
an indication change occurs, the lost messages can led to incorrect signal status indications 
in the simulation. Since the outages could be on the order of a few seconds to several hours, 
dropped messages could result in unrealistic timing pattern transitions as a missed change 
message could result in Vissim transitioning between non-sequential signal states, e.g., 
transitioning directly from the GREEN of one phase to the GREEN of the next, entirely 
skipping indication(s), etc.  It is critical to recognize that the signals in the field did not 
likely experience these issues, instead the data loss is occurring between the field and the 
Vissim model.   

 
The primary issues related to signal data loss can be listed as follows:  
 

1. Message latency beyond negligible levels: usually the signal state messages are 
received within milliseconds of the actual occurrence in the field. However, 
instances were seen where the message delay was on the order of a signal cycle. As 
such, the delayed message causes a difference between the traffic signal state in the 
field and the status reflected in the simulation. 

2. Intermittent message drops: due to intermittent communication failures in the 
wireless (cellular) network, there could be message drops. Dropped messages lead 
to a failure to update the status in the simulation and lead to an incorrect extension 
of the signal state in the simulation. 

3. Extended message transmission failure: termination of message receiving process 
due to malfunctioning equipment (hardware) or crashing of communication 
routines may lead to an extended outage that can last a few hours to a few days, 
depending on the nature of the failure and the maintenance response. 
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4. System Architecture: while the model architecture has undergone robust testing the 
potential remains for errors or issues in the code, where unforeseen exceptions are 
not captured.   

Loss of signal stream messages was seen to result in several potential errors in 
implementing the signal control in Vissim, including: 
 

1. Long RED-Clearance, GREEN, AMBER, or RED  
2. Missing GREEN, AMBER, or RED in a cycle 
3. Missing block of signal information for a longer time period, from several cycles 

to hours. 

The trends of signal data losses were studied over 49 different days from January, 2019 to 
May, 2019, with a mix of week days and weekends. The data was tested for integrity using 
some basic rules of acceptable durations of RED, AMBER, and GREEN. 

4.4.2.1. All-RED Duration 

Given the traffic signals in the network, All-RED durations of more than 5s were deemed 
likely incorrect and hence were tagged as anomalies. The 3D plots are helpful in visualizing 
the patterns of the anomalies and are available on the project website at: 
http://realtime.ce.gatech.edu/coa/sigplots/allred.html. It was found that I-75/85 Connector, 
Spring St., and West Peachtree St., have consistently high occurrences of long all-RED 
instances across all days. Also, after some maintnance updates in March, there has been an 
increased occurrence of anomalies in all-RED durations for the Spring St. intersection. 
When each intersection was inspected individually a wide variation in the occurance of all-
RED irregularities (i.e. greater than 5s all-RED) was seen, as demonstrated by comparing 
Peachtree St. NW (Figure 28a) to Parkway Dr. NE (Figure 28). (See also 
http://realtime.ce.gatech.edu/coa/sigplots/allredselect.html)   
 

 
(a)                                                                   (b)       

Figure 28: All-RED irregularities: (a) Peachtree St. NE and (b) Parkway Dr. NE 

http://realtime.ce.gatech.edu/coa/sigplots/allred.html
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4.4.2.2. RED Duration 

The 3D plots representing the anomalies related to RED durations are available on the 
project website at: http://realtime.ce.gatech.edu/coa/sigplots/red.html. In these plots, the 
RED durations below 400s are plotted at different times of the day for each intersection. 
Several instances showed longer RED duration than would be expected. In addition, RED 
durations of individual intersections at different times of the day can be inspected at: 
http://realtime.ce.gatech.edu/coa/sigplots/redselect.html. When inspected individually, 
several trends of irregularities were discovered related to RED durations. For example, one 
such irregularity trend was noticed for the eastbound movement of Peachtree St. NE 
(Figure 29), where since mid-April RED durations in excess of 400 seconds are seen at the 
end of the day. Other irregularities appear random and do not present any particular trends 
for this intersection. Similar issues are seen at other intersections.      
 

 
Figure 29: RED duration irregularities 

4.4.2.3. AMBER Duration 

The 3D plots of the anomalies for AMBER durations are available on the project website 
at: http://realtime.ce.gatech.edu/coa/sigplots/amberselect.html. It is observed that for 
AMBER anomalies, different intersections show different trends.  
 Plots were made for all intersections, for the instances in which the AMBER 
duration for any movement was more than 8 seconds. It was observed that some 
intersections had relatively fewer issues compared to others. For instance, when 
considering the AMBERs for the westbound through movements a few irregularities are 
seen on Piedmont Ave., whereas Peachtree St. NE has a significantly higher number of 
irregularities, mostly in late March and early April. Figure 30 provides sample data from 
the Piedmont Ave. and Peachtree St. NE intersections.    
  

http://realtime.ce.gatech.edu/coa/sigplots/amberselect.html
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(a)                                                               (b)       

Figure 30: AMBER duration irregularities: (a) Piedmont Ave., (b) Peachtree St. NE 

 Sensitivity Analysis Experiment Methodology 

Gaps in the data stream feeds to the simulation can result in underestimates in traffic 
volumes or unrealistic congestion due to incorrect signal control. While imputations on 
data gaps can be used to emulate a more realistic traffic scenario, it is also crucial to 
understand the potential impact of imputation errors on the simulation results. While data 
imputations are needed in both volume and signal data streams, this project initially focuses 
on understanding the impact of volume data imputations on model-generated performance 
measures. For this effort, signal messages were generated to infill missing data based on 
historic timings; however, future efforts will explore impacts of potential signal errors. 

4.5.1. Experiment Design 
The current data imputation method assumes that imputed data are drawn from historic 
data, and as such, may differ from actual field conditions. The current field data have no 
day with complete data, that is, all 112 days in the data set had both volume and signal 
timing outages, so a composite typical day with complete data was generated. Monday, 
March 18, 2019, was chosen as the base day, with missing signal and volume gaps imputed 
based on historic data, existing signal timing plans, alternate data sources (e.g., count data 
from a corridor development report), and any other available data sources. This base day 
is then considered to be “accurate” field conditions for the sensitivity analysis. In addition, 
24-hour data loss patterns are generated based on the 112 days of field data. A random 
selection of five of the data loss patterns are applied to the base day to create five base day 
with data gaps scenarios. Data imputation is then undertaken for these scenarios. Three 
levels of volume imputation error are tested—20%, 50%, and 80% —with imputed volume 
errors inserted into the detection data streams for those detectors and times identified as 
having data loss in the given data loss pattern. The error levels are representative of the 
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difference observed in volumes on the corridor in several locations over the 112 days. Ten 
replicate trials are completed for each base day with data gaps gap pattern at each error 
level, resulting in 160 total simulation trials (including 10 replicate trials of the base day). 
Key performance measures are then generated from the simulation tool for a base day and 
the base day with data gaps, allowing for an evaluation of the impact of volume data 
imputation errors. As the data are prepared a priori for this experiment the simulation was 
run faster than real-time to allow reduced processing time. 

Figure 31 schematically shows the design of volume data stream imputations and 
the logic position in the real-time simulation model architecture. In the real-time simulation 
model architecture, data imputations are applied at the data input level prior to injecting 
the data into the simulation model. Thus, the imputed data will be formatted as the field 
data and the imputation method will have no dependency on the simulation model (Vissim 
in this experiment).  

 
 

 
(a) 

 
(b) 

Figure 31: (a) Base day raw volume data stream to base day with imputed data, (b) 
Volume imputations for raw data Streams processing module.  

4.5.1.1. Modelling Likelihood of Missing Data on a Simulated Day Using 
Unsupervised Learning Method 

One of the key items in the experiment is the generation of data gap patterns. Data gap 
patterns are based on the 24-hour volume data streams received over 112 days spread 
across February, March, April, and June 2019, at 147 detector locations in the study 
corridor. As discussed, volume data for each detector are received in 6-minute aggregate 
vehicle counts. Over the 112 days, 29 detectors failed to provide any detection data. The 
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remaining 118 detectors experienced at least one intermittent data loss, ranging from 6-
minutes (a single bin) to an entire day. To analyze the data loss patterns a binary 
representation of the volume data was generated, where 0 represents volume data presence 
with a 6-minute bin and 1 represents volume data absence. Each detector, per day, was 
considered a sample for the cluster analysis. Thus, for the detectors that received at least 
some data there are 13,216 detector samples (i.e., 118 detectors x 112 days). These samples 
are clustered into groups to allow for a determination of the likelihood of different failure 
patterns. K-means unsupervised learning is used to cluster the 13,216 samples into groups 
based on selected key characteristics of the data gap pattern. 

Missing Volume Pattern Grouping using K-means Clustering Algorithm: Each 
detector sample contains 240 binary values (i.e., number of 6 minute intervals in a day) 
representing the presence or absence of detection per interval. To find clusters with 
different presence and absence patterns, features are extracted that describe the primary 
characteristics of potential patterns. This feature engineering reduces the dimension of each 
sample from 240 to 7. 

 
The following seven features were selected based on multiple clustering trials:  

• Feature 1 - Total count of intervals without data over 24 hours: captures variation 
in number of absences 

• Feature 2 - Average separateness between intervals without data, i.e., average 
separateness between absences: captures variation in spread between absence 
occurrences  

• Feature 3 - Number of intervals without data within a cluster (i.e., more than one 
consecutive interval without data): captures number of absence intervals within 
groups 

• Feature 4 - Maximum consecutive string of intervals without data in a 24-hour 
period: captures variation in maximum cluster of absences group size  

• Feature 5 - Median monsecutive string of intervals without data in a 24-hour period: 
captures variation in median cluster of absences group size 

• Feature 6 - Sum of intervals without data included in a string with 24-hour period: 
captures variation in total number of intervals with a group 

• Feature 7 - Sum of positions of first interval with missing data point relative to start 
of day and last missing data point from end of day: captures variation in range in 
which absence occurrences are distributed within the 24 hr. period 

The 24-hour data samples with 0 absences (no data loss) and 240 absences (complete data 
loss) are separated from the data set based on the feature total count of intervals without 
data over 24 hours. K-means clustering is applied on the remaining instances. To reduce 
dimensions and to reduce correlation between variables, principal component analysis 
(PCA) is performed on the clustering dataset. The dataset contains 13,216 instances, where 
each instance has seven features. The dataset is standardized over each of the seven features 
before conducting PCA by applying equation (1) on each data point of the seven features. 
Thus, each feature in the standardized data set has mean 0 and variance 1. 

 
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜− µ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝜎𝜎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
     (1) 
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PCA can provide a low dimension orthogonal subspace in which the variance of the 
projected data is maximized (Hotelling 1933). To find this subspace, PCA involves eigen-
decomposition of the covariance matrix of the data. The eigenvalues provide variance of 
the projected data on the principal component along the corresponding eigenvector. Thus, 
the projected data has highest variance along the eigenvectors that corresponds to the 
highest eigenvalues. Results from PCA conducted on the dataset are summarized (Bishop 
2006). 
 
Eigenvalues from PCA: 
 

[𝜆𝜆1 𝜆𝜆2 𝜆𝜆3 𝜆𝜆4 𝜆𝜆5 𝜆𝜆6 𝜆𝜆7 ] = [ 4.39 1.66 0.67 0.21 0.04 0.01 0.001 ] 
 
Percent of variance explained by the seven eigenvectors: 
 

[0.6271 0.2372 0.0960 0.0304 0.0061 0.0026 0.0002] 
 

The percent of variance explained by the first three eigenvalues are approximately 63%, 
24%, and 10%. PCA results show that ~ 97% of variance in data is captured by the first 
three eigenvectors space, that is, the first three principal components (PCs). Table 2, the 
eigenvector matrix provides the vector representation of the three principal components 
along with weights of each feature on their respective PCs. 
 

Table 2: Eigenvector matrix vector representation of the first three principal 
components 

 

�

𝑾𝑾𝑾𝑾 𝑾𝑾𝑾𝑾 𝑾𝑾𝑾𝑾 𝑾𝑾𝑾𝑾 𝑾𝑾𝑾𝑾 𝑾𝑾𝑾𝑾 𝑾𝑾𝑾𝑾
0.46918118 −0.3278184 0.24909679 0.44031693 0.4150821 0.45967952 −0.18132154
0.04402246 0.47814207 −0.43822556  0.28903463  0.33950239 0.18195218 0.58778487
0.05966025 0.13829284 0.76745451  −0.08249622 −0.19575754 0.10498177 0.57635189

�  

 
The clustering dataset is transformed into the three PCs space, thus, each data instance has 
only three features, its value on PC1, PC2, and PC3. Each PC is a weighted linear 
combination of features. Thus, projecting data points in the feature space of the three PCs 
the contribution of variation in data point by all the features will be captured. It can be 
observed that some features that are highly weighted on PC-1 have a lower weight value 
contribution than the other two PCs, such as features 1, 4, and 6. The clusters primarily 
reflect the number of intervals without data, indicating the first PC is reflecting a general 
likelihood of missing data. Feature 1, 4, 5, and 6 contribute highly to PC-1, which explains 
the 63% variance in data. PC-2, with significant weighting on features 2, 3, and 7, appears 
to reflect the spread of the intervals missing data. And finally, PC-3 appears to reflect the 
size of the cluster of intervals missing data. By transforming standardized data points into 
feature space of the three principal components, the contribution to variation in data points 
by all features is captured to a total of 97%. 

The K-means clustering algorithm is applied to the transformed dataset. In this 
algorithm, the value of K, the number of clusters is set a priori. First, K random data points 
are chosen as centers of the K clusters. Next, each remaining data point is allotted to the 
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cluster with the nearest chosen cluster center. After all data points are allotted to a cluster, 
new cluster centers are calculated. Based on the new cluster centers the data assignment 
process is then repeated, with all data points newly assigned to the nearest new cluster 
center. This process is repeated until the cluster centers stabilize and are not changing 
between repetitions. The objective function being minimized through this iterative 
algorithm is presented in equation (2) below. This value is the sum of within cluster sum 
of squared distances. That is, the objective function is the sum of squared Euclidean 
distances of data points from the cluster center to which they are assigned. 

 
𝐽𝐽 =  ∑ ∑ 𝑟𝑟𝑛𝑛𝑛𝑛||𝑥𝑥𝑛𝑛 − µ𝑘𝑘||2𝐾𝐾

𝑘𝑘=1
𝑁𝑁
𝑛𝑛=1      (2) 

Where, 
𝑛𝑛 = 1, 2, 3, … ,𝑁𝑁 is notation for 𝑁𝑁 data points 
𝑥𝑥𝑛𝑛 = 𝑛𝑛 data point 
𝑘𝑘 = 1, 2, 3, … ,𝐾𝐾 is notation for 𝐾𝐾 clusters 
µ𝑘𝑘 = center (mean) of cluster 𝐾𝐾 
𝑟𝑟𝑛𝑛𝑛𝑛 =  �1            𝑖𝑖𝑖𝑖 𝑥𝑥𝑛𝑛  ∈ 𝑘𝑘

0           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

 
The two steps in the iterative process to minimize the objective function are: 1) to find a 
cluster assignment for each data point with fixed cluster centers that minimizes J, and 2) to 
find cluster center that minimizes J keeping the assignment of data point to clusters fixed. 
The K-means algorithm converges to local minimum for the objective function (Bishop 
2006). 

The number of clusters (K) is initiated based on results from the elbow method. The 
sum of squared distances of data points to their closest cluster center (inertia) is evaluated 
for varying values of the number of clusters (K). The point of inflection suggests a value 
for K. The highest K value after which the sum of the squared distance values is not 
significantly reduced is chosen, Figure 32 shows the graph obtained from elbow method. 
The K value after which sum of squared distance values does not drop significantly is 
observed in the graph to be 6 or 7. After looking at cluster results, 7 is chosen. 



Smart Cities Atlanta - North Avenue 

 50 

 
Figure 32: Elbow method to suggest K value. Sum of squared distances versus 

number of clusters. 
Seven clusters are initialized and formed based on the K-means clustering algorithm. 
Similarity in two of the seven clusters is noticed and hence, they are merged into one single 
cluster. Thus, a total of eight clusters are created, where one cluster includes detector 
samples with no data loss, another cluster includes detector samples with a permanent data 
loss pattern, and the remaining six clusters are formed using clustering analysis. Figure 33 
shows two of the clusters. 
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Figure 33: Two clusters of 24-hour data gap patterns with dark blue blocks as data 

loss intervals. 
Figure 34 shows the K-means cluster assignment on the data points projected in the 3-PC 
space. 

 
Figure 34: Clusters of data points projected in the 3-PC space. 

Missing-volume Pattern Generation: The missing-volume pattern for a 24-hour day is 
generated by assigning each of the 147 detectors to a cluster, sampling a data loss pattern 
from the assigned cluster, and assigning that pattern to the detector. Detectors are randomly 
assigned to clusters with a likelihood based on the percentage of the 13,216 samples within 
each cluster. In addition, when assigning detectors to an intermittent data loss pattern, all 
detectors on an approach are considered together, as observations from the field data 
showed that in nearly all cases all detectors on an approach would exhibit the same 
intermittent data loss pattern. It was further noted that permanent data loss could be 
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observed at a single detector or at the intersection approach level. To implement 
assignment of detectors to a data loss pattern (Figure 35), first, a set of approaches with 
complete data loss are randomly assigned from all available approaches in the corridor, 
based on the likelihood of an approach having complete data loss, observed to be 0.13 in 
the 112-day sample. Then, from the remaining approaches, the approaches with complete 
data loss at a turn lane are randomly assigned, again based on field observation of 0.23 in 
the 112-day sample. Finally, all remaining detectors are randomly assigned a cluster and a 
missing-volume pattern.  

 

 
Figure 35: Missing volume data pattern generation methodology. 

4.5.1.2. Simulation Experiment Implementation  

The simulation experiment involves three primary steps: 1) generate missing volume 
pattern, 2) generate base day with data gaps using the missing-volume pattern generated 
in the previous step, and 3) generate base day with data gaps with imputed data.  

Simulation runs are conducted for a 3-hour PM peak period (3 PM – 6 PM). For 
five different missing volume patterns, the average travel time of a vehicle on a route for 
three values of error in data imputation – 20%, 50%, and 80% – is compared with that of 
0% error in data imputation, implying complete data availability. Thus, for each of five 
missing value patterns, runs are conducted for 0%, 20%, 50%, and 80% value of error in 
data imputation for 10 random seeds. 

4.5.1.3. Data Collection Routes and Detector Outages  

The effect of 20%, 50%, and 80% error in data imputation (base day with data gaps) versus 
the base day on travel time is studied by conducting 10 different replicate trials for 5 
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different data loss patterns. Six routes along the mainline of the study corridor are selected 
for travel time comparison. These are: 

1. Route 57: Eastbound State St. NW to Ponce City Mkt. (full corridor length) 

2. Route 58: Westbound Ponce City Mkt. to State St NW (full corridor length) 

3. Route 59: Eastbound State St. NW to Spring St. NW 

4. Route 60: Eastbound West Peachtree St. to Hunt St. NW 

5. Route 61: Westbound Hunt St. NW to West Peachtree St. NW 

6. Route 62: Westbound Spring St. NW to State St. NW 

Along with these selected six routes, the effect of data loss on network entry approaches is 
also studied. For example, missing-volume pattern 1, shown in Figure 36, has three 
boundary intersection approaches and six internal intersection approaches with permanent 
data loss on all lanes, and six boundary approaches and seven internal approaches with 
intermittent data loss on all lanes. In these experiments, potential error in volume 
imputation values for the data loss on boundary approach lanes is inserted by adjusting the 
base volume by 20%, 50%, or 80%. As the simulation is providing vehicle movement once 
a vehicle enters a boundary link, similar errors may not be applied directly to internal links 
with detection outages. However, to reflect the potential impact of volume imputation 
values on internal links the turn movement percentages for the missing lane configurations 
are increased by 5%, 10%, and 15% for the data imputation error scenarios of 20%, 50%, 
and 80%, respectively. This reflects that while internal detector data outages do not directly 
impact the absolute volume through an intersection, they may impact the assigned “volume 
splits.” For example, if the left-only turn lane is missing at an internal approach, the left 
turn percentage at this approach is increased by 5%, 10%, or 15% for the respective error 
in volume data imputation scenario of 20%, 50%, and 80%. 
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Figure 36: Missing volume Pattern 1 generated for the sensitivity experiment. 

Table 3 lists the boundary and internal approaches with permanent or intermittent data loss 
for each of the five patterns.  
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Table 3: Summary of Boundary and Internal Approach Lanes with Permanent or Intermittent Data Loss for the Five Detector 
Outage Patterns. 

  Permanent Data Loss Intermittent Data Loss 
  Boundary Approach/Lane Internal Approach/ Lane Boundary Approach/Lane Internal Approach/Lane 
Pattern Boundary  

Approaches  
with 
Permanent 
Data Loss 
on All 
Lanes   

Boundary 
Approaches  
with 
Permanent 
Data Loss on 
at least One 
Lane  

Internal 
Approaches 
with 
Permanent 
Data Loss on 
All Lanes 

Internal 
Lane 
Approaches 
with 
Permanent 
Data Loss on 
at least One 
Lane  

Complete 
Entry 
Approaches  
with 
Intermittent 
Data Loss 
on All 
Lanes 

Entry Lane 
Approaches  
with 
Intermittent 
Data Loss on 
at least One 
Lane 

Complete 
Internal 
Approaches 
with 
Intermittent 
Data Loss on 
All Lanes 

Internal Lane 
Approaches 
with 
Intermittent 
Data Loss on at 
least One Lane 

Pattern 1 PTST (NB), 
PWDR (SB), 
GIDR (NB), 
HNST (SB) 

LKST (NB), 
LKST (SB),  

LKST (WB), 
TWDR (WB),  
SPST (WB), 
PTST (EB), 
CPPL (EB), 
GIDR (EB) 

TWDR (EB), 
PWDR (WB), 
GIDR (WB) 

TWDR (SB), 
BLVD (NB), 
BLVD (SB), 
GIDR (SB), 
PCM (NB), 
CPPL (SB) 

LKST (NB) LKST (EB), 
JNST (EB), 
CPPL (WB), 
HNST (WB), 
PWDR (WB), 
BLVD (WB), 
PCM (EB) 

PWDR (WB) 

Pattern 2 CPPL (SB), 
HNST (NB), 
HNST (SB), 
PWDR 
(NB), 
PWDR (SB), 
GIDR (NB) 

PTST (SB), 
PCM (SB) 

SPST (WB), 
PDAV (WB), 
CPPL (EB), 
BLVD (EB), 
BLVD (WB) 

LKST (EB), 
JNST (EB), 
PWDR (WB) 

LKST (NB), 
LKST (SB), 
PDAV (NB), 
BLVD (SB) 

PTST (SB), 
PCM (SB) 

STST (EB), 
STST (WB), 
LKST (WB), 
TWDR (WB), 
OFRP (SB), 
SPST (EB), 
GIDR (WB), 
PCM (EB) 

JNST (EB) 
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Pattern 3 SPST (SB),  
CPPL (NB), 
GIDR (SB),  
PCM (SB) 

STST (SB), 
TWDR (NB),  
OFRP (SB), 
PTST (NB), 
JNST (SB), 
CPPL (SB) 

PTST (EB) STST (EB), 
LKST (EB), 
TWDR (EB), 
CPPL (EB), 
PWDR (EB), 
GIDR (WB) 

TWDR (SB), 
PTST (SB), 
PDAV (NB),  
HNST (NB), 
HNST (SB), 
BLVD (SB), 
PCM (NB) 

STST (SB), 
TWDR (NB),  
JNST (SB)  

SPST (WB), 
PDAV (WB), 
PWDR (EB), 
BLVD (EB), 
GIDR (EB)  

CPPL (EB), 
GIDR (WB) 

Pattern 4 SPST (SB), 
PWDR 
(NB), GIDR 
(SB) 

TWDR (SB), 
WPTST 
(NB),  
PTST (NB), 
PCM (SB) 

STST (EB), 
PDAV (WB), 
CPPL (EB), 
CPPL (WB),  

SPST (EB), 
JNST (WB), 
HNST (WB), 
PCM (EB), 
PCM (WB) 

STST (SB), 
TWDR 
(NB), PTST 
(SB), CPPL 
(SB), BLVD 
(NB), BLVD 
(SB), GIDR 
(NB), 

TWDR (SB), 
PTST (NB) 

OFRP (WB), 
PTST (WB), 
PWDR (WB), 
BLVD (WB), 
GIDR (WB)  

JNST (WB), 
HNST (WB), 
PCM (WB) 

Pattern 5 LKST (NB), 
LKST (SB), 
BLVD (SB), 
PCM (NB), 
HNST (NB),  
HNST (SB) 

OFRP (SB), 
PTST (SB), 
JNST (SB), 
SPST (SB) 

SPST (EB), 
JNST (WB)  

STST (EB), 
STST (WB), 
LKST (EB), 
TWDR (EB), 
TWDR (WB), 
WPTST 
(WB), HNST 
(WB) 

STST (SB), 
PTST (NB), 
PDAV (NB), 
BLVD (NB), 
PCM (SB) 

_ OFRP (EB), 
OFRP (WB), 
WPTST (EB), 
PTST (EB), 
PWDR (WB), 
BLVD (EB), 
GIDR (EB), 
GIDR (SB), 
PCM (EB) 

TWDR (EB), 
WPTST (WB) 
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Key for Intersection 
Abbreviations Used in 
this Table 

1. State St. NW @ North Avenue NW               STST 
2. Luckie St. NW @ North Avenue NW LKST 
3. Techwood Dr. NW @ North Avenue NW TWDR 
4. I 75/85 Off Ramp @ North Avenue NW OFRP 
5. Spring St. NW @ North Avenue NW SPST 
6. W. Peachtree St. NW @ North Avenue NW WPTST 
7. Peachtree St. NE @ North Avenue NW PTST 
8. Juniper St. NE @ North Avenue NW JNST 
9. Piedmont Ave NE @ North Avenue NW PDAV 
10. Central Park Pl. NE @ North Avenue NW CPPL 
11. Hunt St. NE @ North Avenue NW               HNST 
12. Parkway Dr. NE @ North Avenue NW PWDR 
13. Boulevard NE @ North Avenue NW BLVD 
14. Glen Iris Dr. NE @ North Avenue NW GIDR 
15. Ponce City Mkt. @ North Avenue NW PCM 
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In Figure 37, the mainline routes studied for all patterns are shown on a network schematic. Figure 
37also shows the five side-street routes studied for Pattern 1. For all patterns, side-street through-
vehicle routes associated with the boundary approaches that observe permanent volume data loss 
for one or all lanes are studied. (For Pattern 1, Hunt St. NE (SB)), which experiences detector 
outage, has no through vehicles; hence, a side street route is not included.) The side-street route 
numbers associated with Pattern 1 are:  

1. Route 43: Luckie St. NW SB (left turn only) 

2. Route 78: Luckie St. NW NB (shared thru-right) 

3. Route 86: Peachtree St. NE NB (all approach lanes) 

4. Route 67: Parkway Dr. NE SB (all approach lanes) 

5. Route 65: Glen Iris Dr. NE NB (all approach lanes) 

 
Figure 37: Routes on which vehicle travel times are studied for Pattern 1 detector outages. 

 Results 

Variation in mean and 85th percentile vehicle travel times for the ten replicate simulation runs for 
the base case (0%), and the base case with gaps (20%, 50%, and 80%) is studied. Similar trends 
are observed in both cases. For missing-volume Pattern 1, the variation in 85th percentile vehicle 
travel times for the 10 replicate simulation runs for the base case (0%), and the base case with 
gaps (20%, 50%, and 80%) are presented in the Figure 38 boxplot. For each of the six mainline 
routes, the boxplot presents the variation in the mean travel time of all vehicles that complete the 
given route, for each of the 10 replicate runs. An upward trend in travel times is observed from 0% 
to the 20%, 50%, and 80% error on most of the studied routes. The effect of error in data imputation 
on travel time is greater on the eastbound end-to-end route than the westbound end-to-end route. 
Route 59 and 60 are subparts of the eastbound end-to-end Route 57. Both the western half (Route 
59) and eastern half (Route 60) contribute to the overall increase from west-to-east (Route 57). An 
upward trend in the mean travel time is observed on the side street Routes 67, 78, and 86, while 
Routes 43 and 65 do not have an increasing travel time with increasing errors. The lack of impact 
on Route 43 (Luckie St. NW (SB)) is likely as result of base traffic volumes being close to saturated 
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condition; thus, additional travel time was experienced outside the travel time trap (vehicles were 
not able to enter the link), while Route 65 (Glen Iris Dr. NE (NB)) observed a very low hourly 
volume (approximately 110 vph) for the base case, resulting in a minimal travel time increase even 
given the increasing error percentage.  
 

 
Figure 38:  Boxplot of 85th percentile vehicle travel times for data imputation error cases, for 

Pattern 1 mainline and side street routes. 
Figure 39 visualizes the mean simulation vehicle input count at the side streets for the error in data 
imputation cases – 20%, 50%, and 80% – in comparison to the base case. With the exception of 
Luckie St. NW (SB), which is at near-saturation state in the base case, the volume input counts at 
other approaches show an increase. 
 

 
 

Figure 39: Mean simulation vehicle input count for data imputation error cases in 
comparison to the base case on the side-street routes that observed permanent 
data loss in Pattern 1. 
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Figure 40 shows the travel time impact of imputed volume data on approaches that observe 
permanent data loss, as well as the mainline routes for Patterns 2 through 5. For brevity, detailed 
results are not written for each, but findings from these patterns will be presented in the discussion 
section.  
 

 
Figure 40:  Variation in 85th percentile travel time values at the mainline and side street 

routes for the five missing volume patterns. 

4.6.1. Intermittent Data Loss 
The impact of intermittent data loss on travel time is studied using a statistical test for a selected 
case. Among the five missing-volume patterns simulated, for the PM peak hour period (3 PM – 6 
PM), Pattern 3 contained three entry approaches with intermittent volume data loss - Techwood 
Dr. NW (SB), Piedmont Ave. NE (NB), and Boulevard (SB) - making this a good scenario to 
investigate the impact of intermittent data loss. The Techwood Dr. NW (SB) volume data loss 
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pattern had more frequent distributed data gaps; hence, it was selected to study the impact of 
intermittent data gap imputations on side-street travel time.  

4.6.1.1. Case Study: Impact of Intermittent Volume Data Gap Imputations at 
Techwood Dr. NW 

To study the impact of intermittent volume data gap imputations on travel time, result from two 
simulation scenarios are compared: 1) Pattern 3 with intermittent and permanent data loss – 
referred to as with intermittent loss scenario; and 2) Pattern 3 with only permanent data loss – 
referred to as without intermittent loss scenario. Pattern 3 with only permanent data loss comprises 
an additional 10 simulation runs (10 replicates of the permanent detection loss only pattern) in 
addition to the 160 already discussed. The comparison of these two scenarios allows for an 
isolation of the impact of intermittent data loss. Results from 10 random seed simulation runs for 
the two scenarios are compared for the three imputations error cases: 20%, 50%, and 80%.  

The simulation time of 3 hours (3 PM to 6 PM) is binned into 6-minute intervals. For each 
detector error scenario, for each replicated run, for each time bin, the 85th percentile travel time is 
calculated. This results in a series of 30 (i.e., the number of bins) 85th percentile travel times across 
the 3 hours, for each replicate trial. These 30 values are then averaged, resulting in a single 85th 
percentile value for each replicate. Finally, the difference between the replicate value for the with 
intermittent loss scenario and without intermittent loss scenario is calculated, where the paired 
replicates have the same seed. Equation (3) provides the described 85th percentile difference 
between paired replicated trials. The results for all scenarios are shown in and Table 4. 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 20% 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  
∑ �85𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖𝑖𝑖,20% 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �∀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑁𝑁𝑁𝑁.  𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
−  

∑ �85𝑡𝑡ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,20%
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �∀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑁𝑁𝑁𝑁.  𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
∀ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (3) 

 
Where, 

tt = travel time 
 timebin = simulation time bin such as (0, 360), (360, 720), etc. 
 seed= simulation trail seed, such as seed 21, seed 22, seed 23, etc. 
 int = result from with intermittent loss scenario run 
 woin = result from without intermittent loss scenario run 
 
A t-statistics hypothesis test (see Table 4) is conducted for each error adjustment in the volume 
data imputation case to test if imputations on intermittent data loss statistically increase the travel 
time. A one-sample t-test for the mean is conducted to test the alternate hypothesis that the mean 
85th percentile travel time difference for 10 samples will be greater than 0, with the null hypothesis 
that the mean 85th percentile difference is 0. In this test, the sample set includes values of all 30 
time bins. 
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Table 4: Average 85th percentile difference of all time bins for 10 random seed runs for the 
three error imputation scenarios. 

Seed Error adjustment  
of 20% 

Error adjustment 
of 50% 

Error adjustment 
of 80 

Seed 1 24.22 20.01 7.05 
Seed 2 27.50 61.82 24.78 
Seed 3 17.08 44.46 3.90 
Seed 4 -33.71 13.14 32.67 
Seed 5 0.54 14.22 11.49 
Seed 6 14.95 -3.75 27.34 
Seed 7 -23.24 -0.53 10.49 
Seed 8 -21.13 8.84 24.27 
Seed 9 10.47 17.76 60.35 
Seed 10 2.82 32.67 75.22 
Mean 1.95 20.86 27.75 

t-test P-value 0.291 0.005 0.002 
Significant 
level:0.05 

P value > 0.05 P value < 0.05 P value < 0.05 

 Fails to reject null 
hypothesis 

Reject null 
hypothesis 

Reject null 
hypothesis 

 
For an error adjustment of 20%, for a 0.05 significance level, the t-test fails to reject the null 
hypothesis that there is no effect on travel times due to imputations in intermittent data loss. While 
for the higher error adjustments, 50% and 80%, the t-test results reject the null hypothesis in favor 
of the alternate hypothesis that travel time for the with intermittent loss scenario is higher than that 
of the without intermittent loss scenario. The hypothesis test results indicate that higher error in 
data imputation values can impact the simulation-generated travel time results at approaches with 
intermittent data loss patterns when the sample difference values for all time bins are considered. 
The data plotted in Figure 41 provide a visual confirmation of this finding.   
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Figure 41: Variation in average 85 percentile travel time differences with intermittent loss 

scenario and without intermittent loss scenario of all time bins for different error 
in data imputation cases. 

A similar hypothesis test is conducted to test if the travel times are significantly higher for time 
bins that follow the time bins with imputed values for the with intermittent loss scenario in 
comparison to that of the without intermittent loss scenario. That is, does the intermittent error 
potentially increase as the number of consecutive intervals with missing data increases? For this 
hypothesis test, the average 85th percentile difference in travel time is evaluated only for the six 
time bins that follow the time bins with intermittent data loss. Similar to the prior results, the 
hypothesis test t-test fails to reject the null hypothesis for the error adjustment 20% case while for 
the error adjustment 50% and 80% cases rejects the null hypothesis in favor of the alternate 
hypothesis that higher travel times are observed in time bins that follow after the imputed time 
bins. Unfortunately, the small sample size (six samples) likely limits the ability to statistically 
distinguish differences at lower error levels.  Future analysis will expand the study period to 
include additional data samples.   

 Discussion 

The results plotted in Figure 38 and Figure 40 for the five missing-volume patterns indicate higher 
sensitivity of travel time on the eastbound routes in comparison to that of the westbound routes, 
likely an indication of the eastbound direction of travel operating closer to capacity. This is seen 
in the simulation where at several intersections the simulation is unable to process the full traffic 
load created by the imputation errors. Mainline eastbound travel time increases are spread 
throughout the corridor, as seen by increases on both subroutes 59 (EB, west of Spring St.) and 60 
(EB, east of Spring St.). However, one section of roadway may be more impacted; for instance, 
the western portion of North Ave. (Route 59) is the source of most of the eastbound increases in 
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Patterns 3, 4, and 5. Further, it is seen that the travel time increases on the eastbound end-to-end 
(Route 57) and the westbound end-to-end (Route 58) differ substantially across patterns, with 
Patterns 1 and 2 having less impact than Patterns 3, 4, and 5. The pattern travel time differences 
are due to the underlying data gaps and turn-movement errors specific to each pattern. For Patterns 
1 and 2, the less-dramatic eastbound travel time increases indicate that approaches experiencing 
data gaps within these patterns have a lesser impact relative to the missing data in Patterns 3, 4, 
and 5. For example, the higher impact seen with Pattern 3 is hypothesized to be a result of data 
imputation on the Spring St. NW (SB) and 75/85 Off-Ramp/Connector approaches. While other 
approaches in the approach set for Pattern 3 (Central Park Pl. [NB], Glen Iris Dr. [SB], and Ponce 
City Mkt. [SB]) may contribute toward higher traffic in the eastbound direction, their contribution 
to the total higher traffic entering the simulation network is substantially less. In addition, high-
volume approaches could be found to have minimal impact on overall performance where the 
approach had a base case demand volume near saturation. In these instances, the higher volumes 
in the error cases were unable to enter the network during the peak, minimizing the immediate 
impact of these errors. This does not imply that these errors do not influence traffic, simply that 
instead of resulting in more significant congestion during the current peak, they will have the effect 
of spreading out the peak, resulting in a longer period of congested traffic. It is not only total 
volumes that impact performance, but also position of the intersection. For instance, while Ponce 
City Mkt. (SB) does contribute traffic, its position as the east most intersection on the corridor 
lessens its impact on the eastbound traffic flow.  

When considering side street performance, it is again observed that some side-street route 
travel times are more sensitive to data loss than others. Again, this is primarily a function of the 
base volume. For both very low and near-saturation volumes, the impact is minimal, while in the 
remaining cases the impact of the added volume can be significant. In interpreting this result, it is 
critical to recall that the volume errors occur due to failed receipt of detector data by the simulation 
platform. The field signal timing in all scenarios does not change, and it is for the correct traffic 
volume. Thus, the increased volumes in the simulation do not receive higher green times, as the 
signal timing is driven by the timing data from the field     

 

 Conclusion 

The objective of this chapter was the creation of a dynamic data-driven simulation that leverages 
high-frequency connected data streams to derive meaningful insights about the current traffic state 
and near real-time corridor environmental measures. The developed simulation model emulates 
traffic on 2.3 miles of the North Avenue Smart Corridor in Atlanta, Georgia. For this chapter, the 
ability to stream the volume and signal data real-time was expanded to all modeled signalized 
intersections in the corridor. However, investigation of the data streams themselves revealed the 
presence of data gaps. Thus, the model architecture was enhanced to handle such data losses. This 
chapter provided an overview of the improved architecture and utilized sensitivity analysis to 
explore the impact of the volume data gap imputations on the key performance measures produced 
by the near-real-time data-driven simulation.  
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5. CONCLUSIONS  
 
This report presents a near-real-time data-driven simulation of the North Avenue Smart corridor 
and investigates the sensitivity of simulated performance measures to imputations for data loss 
resulting from missing detector streams. The phase 1 hybrid model presented in Chapter 3, and the 
expanded model presented in Chapter 4, demonstrate the feasibility of the overall connected 
corridor simulation approach. Leveraging the high level of communications that are expected to 
be available on a Smart Corridor, extensive sensor deployment, and big data techniques, the real-
time data-driven simulation architecture is developed to enable four primary tasks: 1) injection of 
real-time signal control and volume data that stream into the traffic simulation model through real-
time raw data stream processing, 2) model execution through dynamic data-driven traffic 
simulation, 3) dynamic performance metric visualization, and finally 4) facilitation of efficient 
handling of transactions between modules using a data request transaction management module. 
Utilizing this architecture a demonstration of the calculation and dissemination of near-real time 
key performance measures is demonstrated.   
 Critically, this effort utilized real-time, field data streams. Thus, this effort was able to 
investigate issues related to the transfer of technology from the laboratory to the field. It was seen 
that a smart technology development cannot assume perfect conditions and must account for 
potential communication and data losses to ensure robustness. Even under the best circumstances 
communication and data challenges are to be expected. For instance, this study shows that the 
impact of data issues on the simulated performance measure error is, in part, dependent on the 
combination of intersection approaches experiencing data loss. This combination effect can be 
attributed to both the vehicle volumes observed at these approaches, as well as the ability of the 
approaches to process additional vehicles (i.e., approach capacity). The relative location of the 
intersection approaches with missing data in the corridor, as well as the travel path used in 
generating the measure, also influence performance measure accuracy. For instance, in Patterns 3 
and 5, the close proximity of Spring St. (SB) and Connector (SB) contributed to the higher 
simulated performance measure errors. In addition, to the effects of the spatial outage patterns, the 
temporal outage patterns were also observed to have a measurable effect. The impact of 
intermittent data gap imputations on travel times was studied for the test case of Pattern 3, 
Techwood Dr. (SB). Significant differences in travel were seen for the 50% and 80% error cases. 
At higher data imputation errors (50% and 80%), travel time increases occur during the time bins 
with missing data, as well as those that immediately follow the imputed time bins. 
 Applying an understanding of the various factors influencing potential model errors from 
connected corridor missing detection data streams is crucial to assessing the impact of data 
imputation errors in the generated traffic performance measures. For instance, these insights could 
be used to develop confidence intervals on reported real-time model performance measures. This 
difference in impacts among intersections and approaches may also be used to prioritize 
intersection approaches for maintenance and monitoring, particularly where resources are limited. 
Thus, the identification and prioritization of data streams in a corridor can help provide a more 
robust system and a more efficient application and usage of smart technologies.  
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 Recommendations and limitations 

At their foundation “Smart” initiatives seek to convert data into actionable information. However, 
for the information to be reliable, the data generation must be resilient and the data processing 
needs to be robust. Thus, as cities desire to move into the smart technology paradigm it is critical 
that significant investment be made in efficient data management and handling techniques. In 
addition, cities will need to place high priority on the maintenance and equipment refresh cycle for 
those technologies that are incorporated into the Smart City platform to enable the high level of 
reliability demanded by real-time operations.   
 For smart, real-time applications utilizing these data streams, it is imperative to develop 
and understand the effectiveness of data imputation techniques, as even under the best of 
circumstances data streaming outages will occur. In addition, throughout this study it is assumed 
that the received data streams are a correct reflection of the field. However, these data streams 
likely contain sensor errors, and procedures need to be developed to evaluate and address these 
data shortcomings. 
 Specific to the architecture developed, additional improvements may also be considered. 
For instance, the current platform is limited to using a single simulation instance. The ability to 
incorporate multiple replicates should be considered. In addition, a larger network would likely 
require a distributed simulation approach to maintain faster than real-time performance. 
Ultimately, the goal of this research is to provide a predictive element, enabling the use of the 
model for real-time operational control decisions. Thus, future versions of the architecture will 
include rolling horizon, time warp, or a similar approach to near-term prediction and correction. 

 Next Steps 

The next steps in this research would be to study and identify energy consumption and emissions 
values trends generated from the platform. The two key steps expected to be involved in this effort 
are to implement more advanced imputation methodologies for intermittent signal and volume data 
gaps and to design and conduct a simulation experiment to identify the trends in energy and 
emissions values. In addition, the traditional approaches of imputation using patterns derived from 
archival data from the same source, cross-technology imputation needs to be explored.  
Opportunities to leverage sparse connected vehicle data (that is available during the transition from 
non-connected to connected) to bridge the gaps in the signal volume data streams need to be 
investigated. 

The transferability of the platform needs to be investigated.  It is expected that the overall 
architecture is transferrable; however, specific calibrations and adjustments will likely be needed 
for each corridor.  Finally, as stated, it is critical that the developed architecture be able to execute 
faster than real-time. As the number of intersections in the model increases this will becomes 
increasingly difficult to achieve within the current architecture. Ultimately, the current architecture 
needs to be converted to a parallelized architecture to support the scalability demands of larger 
models.  
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APPENDIX A: SIDEWALK, RAMP, AND CURB CUT 
INVENTORY AND CONDITION ASSESSMENT 

 

 

1. INTRODUCTION 
Providing safe and accessible pedestrian routes is integral to ensuring equal access, and can also 
encourage residents and employees to choose the healthy and sustainable choice of walking as 
their mode of transportation.  Ensuring that pedestrian pathways comply with design guidelines 
adopted under provisions of the Americans with Disabilities Act (ADA) help to facilitate 
pedestrian accessibility and guarantees that all citizens, regardless of physical and cognitive 
ability, have a superior walking experience.   

Developing a pedestrian-friendly and ADA-compliant pedestrian environment begins with 
the generation of a sidewalk link-and-node network for use in an asset management system.  Asset 
management systems assist agencies in implementing sidewalk improvements by establishing a 
consistent method of identifying problems, quantifying impacts, and prioritizing sidewalk repair 
and maintenance.  After the network is prepared, pedestrian infrastructure elements are inventoried 
(e.g., sidewalks, ramps, and curb cuts), for tracking in the asset management system.  Then, the 
applicable features of each element (e.g., length, width, slope, cross-slope, surface condition, etc.) 
are inspected to ensure that the element is in conformance with ADA design guidelines.  Deviations 
of any features from the design standards results in an ADA non-conformance finding, which must 
be identified and remedied within an ADA Transition Plan. 

As part of the Renew Atlanta study conducted by the Georgia Institute of Technology for 
Renew Atlanta, researchers at the Georgia Institute of Technology developed the sidewalk network 
for four major corridors (see Figure 42) and inventoried the sidewalk elements of interest on each 
of the four corridors: 

• Monroe Drive (Armor Drive to Decatur Street) 
• Decatur Street (Boulevard to East Lake MARTA) 
• Campbellton Road (Greenbriar Mall to Oakland City MARTA) 
• North Avenue (Marietta Street to Candler Park Drive) 

Once the inventory was complete, the research team employed semi-automated tools developed 
by the Georgia Tech team to assess the conditions of sidewalks, paths, and ramps for conformance 
with ADA design standards.  In field studies, undergraduate research assistants deploy the 
Sidewalk Sentry™ system, which records geo-tagged video and vibration data from a wheelchair-
mounted tablet.  Field teams then use the Sidewalk Scout™ smartphone app to inventory the 
elements, enter field measurement data for ramp and curb cut features, and automatically assess 
compliance with ADA design standards. 

The research team prepared four reports, one for each of the four corridors summarizing 
the research efforts.  Each report first outlines federal accessibility design standards and guidelines 
as they apply to the transportation network (these standards define the parameters that are used by 
the asset management tools to assess ADA compliance of sidewalks and curb ramps).  Subsequent 
chapters of ach report provide the methodology for generating sidewalk network data, followed by 
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descriptions of how the Sidewalk Sentry™ and Sidewalk Scout™ systems are used in the field to 
record facility design issues, such as uneven sidewalk surfaces, potholes, and defective or missing 
curb ramps.  Using the data entered by field inspectors, these systems automatically generate 
sidewalk, curb ramp, and curb cut inspection reports for each element (sidewalk sub-area, ramp, 
and curb cut), which are provided as report Appendices. The final analytical section of each report 
also provides a scoping estimate of sidewalk, ramp, and curb cut repair costs.  The sidewalk 
network, analytical framework, and inspection results can assist the city in prioritizing sidewalk 
improvements. 
 

 

 

Monroe Drive  
(Armor Drive to Decatur Street) 

Decatur Street 
(Boulevard to East Lake MARTA) 

 

 

Campbellton Road 
(Greenbriar Mall to Oakland City MARTA) 

North Avenue 
(Marietta Street to Candler Park Drive) 

Figure 42: Four Corridors Selected for Atlanta Sidewalk Assessment 

 

As noted above, the appendices to each report include an individual inspection reports for 
each ramp, curb cut, and sidewalk defects.  The Appendices number in the hundreds of pages per 
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report (i.e., one page per element inspection).  Each one-page report describes the ADA-
compliance issues recorded in the field, and maps the inspection results for use in geographic 
information systems. 
 

2. SUMMARY OF SIDEWALK, RAMP, AND CURB CUT 
ASSESSMENTS 

The summary of inspection results for the corridors is as follows: 

 Monroe Drive (Armor Drive to Decatur Street) 

The research team inspected 9.7 miles of sidewalk, 320 ramps, and 339 curb cuts in the Monroe 
Drive study area between Armor Drive and Decatur Street.  Inspectors identified a total of 835 
sidewalk defects, 237 non-ADA-compliant ramps, 76 pedestrian crossing locations with missing 
ramps, and 295 non-ADA-compliant curb cuts.  The basic costs for repair and construction 
of missing elements (excluding any extraordinary costs for moving power poles, storm 
sewer features, etc.) are estimated to be about $1.37 million. 
 

 

 Decatur Street (Boulevard to East Lake MARTA) 

The research team inspected 7.4 miles of sidewalk, 172 ramps, and 109 curb cuts in the 
Decatur Street (DeKalb Avenue) study area between Boulevard and East Lake MARTA.  
Inspectors identified a total of 346 sidewalk defects, 109 non-ADA-compliant ramps, 63 
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pedestrian crossing locations with missing ramps, and 87 non-ADA-compliant curb cuts.  The 
basic costs for repair and construction of missing elements (excluding any extraordinary 
costs for moving power poles, storm sewer features, etc.) are estimated to be about 
$430,000. 
 

 

 Campbellton Road (Greenbriar Mall to Oakland City MARTA) 

The research team inspected 9.0 miles of sidewalk, 115 ramps, and 234 curb cuts in the 
Campbellton Road study area between Greenbriar Mall and the Oakland City MARTA.  
Inspectors identified a total of 482 sidewalk defects, 107 non-ADA-compliant ramps, 6 
pedestrian crossing locations with missing ramps, and 167 non-ADA-compliant curb cuts.  
The basic costs for repair and construction of missing elements (excluding any extraordinary 
costs for moving power poles, storm sewer features, etc.) are estimated to be about 
$740,000. 
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 North Avenue (Marietta Street to Candler Park Drive) 

The research team inspected 7.0 miles of sidewalk, 165 ramps, and 184 curb cuts in the 
North Avenue study area between Marietta Street and Candler Park Drive.  Inspectors 
identified a total of 300 sidewalk defects, 148 non-ADA-compliant ramps, 12 pedestrian 
crossing locations with missing ramps, and 157 non-ADA-compliant curb cuts.  The basic 
costs for repair and construction of missing elements (excluding any extraordinary costs for 
moving power poles, storm sewer features, etc.) are estimated to be about $570,000. 
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